A novel approach for diabetic foot diagnosis: Deep learning-based detection of lower extremity arterial stenosis

医学 狭窄 棱锥(几何) 特征(语言学) 人工智能 钙化 放射科 心脏病学 模式识别(心理学) 计算机科学 数学 几何学 语言学 哲学
作者
Chongxin Wu,Changpeng Xu,Shuanji Ou,Xiaodong Wu,Jing Guo,Yong Qi,Shuting Cai
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:207: 111032-111032 被引量:7
标识
DOI:10.1016/j.diabres.2023.111032
摘要

Assessing the lower extremity arterial stenosis scores (LEASS) in patients with diabetic foot ulcer (DFU) is a challenging task that requires considerable time and efforts from physicians, and it may yield varying results. The presence of vascular wall calcification and other irrelevant tissue information surrounding the vessel can further compound the difficulties of this evaluation. Automatic detection of lower extremity arterial stenosis (LEAS) is expected to help doctors develop treatment plans for patients faster.In this paper, we first reconstructed the 3D model of blood vessels by medical digital image processing and then utilized it as the training data for deep learning (DL) in conjunction with the non-calcified part of blood vessels in the original data. We proposed an improved model of vascular stenosis small target detection based on YOLOv5. We added Convolutional Block Attention Module (CBAM) in backbone, replaced Path Aggregation Network (PANET) with Bidirectional Feature Pyramid Network (BiFPN) and replaced C3 with GhostC3 in neck to improve the recognition of three types of stenosis targets (I: <50 %, II: 51 % - 99 %, III: completely occluded). Additionally, we utilized K-Means++ instead of K-Means for better algorithm convergence performance, and enhanced the Complete-IoU (CIoU) loss function to Alpha-Scylla-IoU (ASIoU) loss for faster reasoning and convergence. Lastly, we conducted comparisons between our approach and five other prominent models.Our method had the best average ability to detect three types of stenosis with 85.40% mean Average Precision (mAP) and 74.60 Frames Per Second (FPS) and explored the possibility of applying DL to the detection of LEAS in diabetic foot. The code is available at github.com/wuchongxin/yolov5_LEAS.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柚子的傻二哥应助Dy采纳,获得50
1秒前
圆锥香蕉发布了新的文献求助10
1秒前
fpaper发布了新的文献求助10
1秒前
mememelody完成签到,获得积分10
2秒前
黄丁燕发布了新的文献求助10
3秒前
3秒前
3秒前
粒粒完成签到,获得积分10
4秒前
4秒前
httpyg完成签到,获得积分10
4秒前
干净的硬币完成签到,获得积分10
4秒前
5秒前
如常完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
8秒前
仕子佳人发布了新的文献求助10
9秒前
归玖发布了新的文献求助10
9秒前
hugdoggy完成签到,获得积分10
9秒前
cx发布了新的文献求助10
9秒前
S,MZ发布了新的文献求助10
10秒前
Luckyseven发布了新的文献求助10
10秒前
ni完成签到,获得积分10
10秒前
张卓荦完成签到,获得积分10
10秒前
原来发布了新的文献求助10
10秒前
11秒前
Orange应助cqsz采纳,获得10
11秒前
洁净的文涛完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
AHR发布了新的文献求助10
12秒前
YYT完成签到,获得积分10
12秒前
13秒前
14秒前
大白完成签到,获得积分10
14秒前
黄丁燕完成签到,获得积分20
15秒前
大气早晨发布了新的文献求助10
15秒前
康康完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979