A novel approach for diabetic foot diagnosis: Deep learning-based detection of lower extremity arterial stenosis

医学 狭窄 棱锥(几何) 特征(语言学) 人工智能 钙化 放射科 心脏病学 模式识别(心理学) 计算机科学 数学 几何学 语言学 哲学
作者
Cheng-Hsuan Wu,Changpeng Xu,Shuanji Ou,Xiaodong Wu,Jing Guo,Yong Qi,Shuting Cai
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:207: 111032-111032 被引量:1
标识
DOI:10.1016/j.diabres.2023.111032
摘要

Assessing the lower extremity arterial stenosis scores (LEASS) in patients with diabetic foot ulcer (DFU) is a challenging task that requires considerable time and efforts from physicians, and it may yield varying results. The presence of vascular wall calcification and other irrelevant tissue information surrounding the vessel can further compound the difficulties of this evaluation. Automatic detection of lower extremity arterial stenosis (LEAS) is expected to help doctors develop treatment plans for patients faster.In this paper, we first reconstructed the 3D model of blood vessels by medical digital image processing and then utilized it as the training data for deep learning (DL) in conjunction with the non-calcified part of blood vessels in the original data. We proposed an improved model of vascular stenosis small target detection based on YOLOv5. We added Convolutional Block Attention Module (CBAM) in backbone, replaced Path Aggregation Network (PANET) with Bidirectional Feature Pyramid Network (BiFPN) and replaced C3 with GhostC3 in neck to improve the recognition of three types of stenosis targets (I: <50 %, II: 51 % - 99 %, III: completely occluded). Additionally, we utilized K-Means++ instead of K-Means for better algorithm convergence performance, and enhanced the Complete-IoU (CIoU) loss function to Alpha-Scylla-IoU (ASIoU) loss for faster reasoning and convergence. Lastly, we conducted comparisons between our approach and five other prominent models.Our method had the best average ability to detect three types of stenosis with 85.40% mean Average Precision (mAP) and 74.60 Frames Per Second (FPS) and explored the possibility of applying DL to the detection of LEAS in diabetic foot. The code is available at github.com/wuchongxin/yolov5_LEAS.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huang完成签到,获得积分10
1秒前
1秒前
1秒前
yoyo发布了新的文献求助10
3秒前
4秒前
华仔应助白雪皑皑采纳,获得10
4秒前
4秒前
5秒前
服部平次发布了新的文献求助10
6秒前
田様应助笑点低的牛二采纳,获得10
6秒前
WYR完成签到 ,获得积分10
6秒前
雨寒发布了新的文献求助10
7秒前
李健应助温酒叙人生采纳,获得10
8秒前
8秒前
情怀应助dongxiaomai采纳,获得30
12秒前
maomao发布了新的文献求助100
12秒前
英俊的铭应助慧妞采纳,获得10
12秒前
WYR发布了新的文献求助10
13秒前
贺飞风发布了新的文献求助30
13秒前
学院路完成签到,获得积分10
14秒前
学者完成签到,获得积分10
15秒前
15秒前
16秒前
初余完成签到 ,获得积分10
16秒前
Fazie完成签到 ,获得积分10
17秒前
77发布了新的文献求助10
18秒前
20秒前
桐桐应助NN大可爱采纳,获得10
21秒前
酷波er应助1111rrrrr采纳,获得30
22秒前
慧妞发布了新的文献求助10
26秒前
26秒前
27秒前
HSF完成签到 ,获得积分10
29秒前
zourui发布了新的文献求助10
29秒前
29秒前
29秒前
yidashi完成签到,获得积分10
30秒前
想飞的熊完成签到 ,获得积分0
30秒前
沉默安波完成签到,获得积分10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237