亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Genome Wide siRNA Screen Identifies CGAS-Sting Pathway As a Pharmacological Target That Promotes Survival of Hematopoietic Stem Cells Deficient in Fanconi Genes

范科尼贫血 生物 干细胞 FANCD2 骨髓衰竭 癌症研究 骨髓 造血 免疫学 DNA修复 基因 遗传学
作者
Arvindhan Nagarajan,Nicholas Neeley,Paymon Doroodian,Ane Olazabel,Gary M. Kupfer
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 1083-1083
标识
DOI:10.1182/blood-2023-187180
摘要

Introduction Fanconi anemia (FA) is a homozygous recessive genetic disorder due to mutation in the Fanconi family of genes. The disease is characterized by early onset bone marrow failure and a predisposition to cancer. The FA genes are involved in DNA damage sensing and repair. Mutation in these genes leads to heightened DNA damage and extreme sensitivity to cross-linking agents. Hematopoietic stem cells of FA patients are defective in differentiation and self-renewal, leading to stem cell exhaustion and bone marrow failure early in life. The current treatment for bone marrow failure is allogeneic stem cell transplant from healthy donors. Due to difficulties in finding matching donors and the inherent problems associated with allogeneic transplants, pharmacological therapies that delay or prevent bone marrow failure are of clinical importance. Other proposed therapies including TGF-b, metformin, and resveratrol have met with limited clinical success. Methodology: To identify genes that promote survival of FA cells we performed a genome wide siRNA screen using isogenic pair of cell line with FANCD2 deletions and its corrected counterpart using transfection of siRNA libraries targeting 18,119 genes from Human Drug Targets, Human Druggable Genome, and Human Genome libraries at 2000 cells/well in 384-well plates followed by cell viability measurement after 72 hrs. We measured IRF3 phosphorylation and expression of immune related genes to analyze the CGAS-STING pathway. Using peripheral blood and bone marrow derived CD34+ cells transduced with lentivirus expressing shRNA against FANCD2 we tested the effect of CGAS inhibitor in promoting CFU-GM and CFU-E. Results: A genome wide siRNA screen identified IRF7 as one of the top 5 hits whose diminished expression resulted in increased viability of F-D2 mutant PD20 cells. IRF7 along with IRF3 serve as downstream transcription factors including various Toll-like receptors, CGAS-STING pathways, and other pattern recognition innate immune receptors. Using pIRF3 as an activation readout for CGAS-STING pathway we identified that both FANCD2 and FANCA mutant cells have elevated pIRF3 levels. The elevated pIRF3 levels were further increased upon addition of mitomycin C (MMC) in FA mutant cells as compared to gene corrected cells. The pIRF3 levels decreased upon both genetic KD and small molecule inhibition of both CGAS and STING. In line with increased pIRF3 FA mutant cells showed increased gene expression of various interferon-regulated genes, which were then also reduced by CGAS inhibitor. Overexpression of RNAseH1 partially reduced pIRF3 levels in FA mutant cells indicating that the RNA:DNA hybrids whose levels are elevated in FA mutant cells is one of the ligands of CGAS. Most importantly 10µM of CGAS inhibitor RU.51 was able to rescue FA-A mutant cell line 6914 cells from low dose MMC-induced cell death showing that the sensitivity of FA mutant cells to DNA damaging agents was at least partially driven by CGAS-STING pathway. We then tested if the protective effect of CGAS inhibitor extended to human CD34+ cells deficient in FA genes. 20µM of RU.51 was able to rescue the CFU-GM and CFU-E defects of CD34+ cells carrying lentiviral integrated shRNA against FANCD2 to a level to that in cells expressing non-silencing shRNAs. Interferon-regulated gene expression was also elevated in the FANCD2-deficient CD34+ cells, which was reversed by treatment with cGAS inhibitor. Conclusions: It has previously been shown that FA patients have elevated TNF-alpha, IFN-gamma levels, and NFkbactivation, and interferon alpha administration hastens the onset of bone marrow failure in FA patients. Our results show that FA mutant cells have elevated CGAS-STING signaling resulting in heightened interferon gene expression. Elevated R-loop levels in FA cells act as trigger for the CGAS-STING pathway. CGAS inhibitor is able to rescue low dose MMC-induced cell death in FA mutant fibroblasts and also restores the CFU-GM and CFU-E forming ability of CD34+ cells. These results indicate that CGAS-STING pathway is a pharmacologically tractable target to reverse the hematopoietic stem cell exhaustion seen in FA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZSJ发布了新的文献求助10
3秒前
picapica668发布了新的文献求助10
3秒前
韩十四完成签到 ,获得积分10
5秒前
tata0215完成签到 ,获得积分10
15秒前
又村完成签到 ,获得积分10
16秒前
Singularity应助ZSJ采纳,获得10
16秒前
CodeCraft应助ZSJ采纳,获得10
16秒前
22秒前
23秒前
23秒前
25秒前
Carrots发布了新的文献求助10
28秒前
小骆发布了新的文献求助10
32秒前
LJYang完成签到,获得积分10
37秒前
37秒前
心灵美鑫完成签到 ,获得积分10
44秒前
47秒前
LJYang发布了新的文献求助30
49秒前
548146完成签到,获得积分10
51秒前
cy发布了新的文献求助10
52秒前
shinysparrow完成签到,获得积分0
56秒前
yhr完成签到 ,获得积分10
1分钟前
ZSJ发布了新的文献求助10
1分钟前
阿文发布了新的文献求助10
1分钟前
今后应助548146采纳,获得10
1分钟前
当时只道是寻常完成签到,获得积分10
1分钟前
小骆完成签到,获得积分10
1分钟前
葡萄成熟时完成签到 ,获得积分10
1分钟前
这个手刹不太灵完成签到 ,获得积分10
1分钟前
淡淡妙竹完成签到 ,获得积分10
1分钟前
田様应助优秀夏天采纳,获得10
1分钟前
赘婿应助picapica668采纳,获得10
1分钟前
jyy完成签到,获得积分10
2分钟前
大模型应助壮壮采纳,获得10
2分钟前
可靠的电源应助风趣含双采纳,获得20
2分钟前
2分钟前
壮壮发布了新的文献求助10
2分钟前
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
ZSJ发布了新的文献求助10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139509
求助须知:如何正确求助?哪些是违规求助? 2790383
关于积分的说明 7795098
捐赠科研通 2446823
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146