Estimating Aboveground Biomass of Alpine Grassland During the Wilting Period Using In Situ Hyperspectral, Sentinel-2, and Sentinel-1 Data

高光谱成像 草原 环境科学 遥感 原位 生物量(生态学) 萎蔫 草地生态系统 地质学 农学 气象学 地理 海洋学 生物
作者
Rui Guo,Jinlong Gao,Shuai Fu,Yangjing Xiu,Shuhui Zhang,Xiaodong Huang,Qisheng Feng,Tiangang Liang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:3
标识
DOI:10.1109/tgrs.2023.3341956
摘要

Accurately estimating of grassland above-ground biomass (AGB) during the wilting period is vital in the dynamic monitoring of vegetation survey, carbon storage research, and grazing livestock supplementation. However, previous studies on grassland AGB during the wilting period have rarely involved the integration of ground-based in situ hyperspectral data and satellite images. In this study, we proposed a multisource remote sensing monitoring approach for grassland AGB based on the differential fusion of satellite–ground spectral data from 139 sample sites collected during the grassland’s wilting period (September–November) on the northeastern Tibetan Plateau. First, the in situ hyperspectral data and Sentinel-2 images were differentiated fusion by using the nonnegative matrix factorization (NMF) method. Then, the Sentinel-1 synthetic aperture radar (SAR) images were further integrated to develop the random forest (RF) model for estimating AGB in the grassland’s wilting period. The results showed that: 1) the NMF-based differentiated fusion model ( $R^{2}$ = 0.60 and root-mean-square error (RMSE) = 586.56 kg/ha) effectively improved the estimation accuracy of AGB for the grassland wilting period compared with the Sentinel-2 satellite model ( $R^{2}$ = 0.54 and RMSE = 627.53 kg/ha); 2) the vegetation indices (VIs) derived from short-wave infrared (SWIR) bands are sensitive to variations of grassland AGB during wilting, which have great potential in the estimation of grassland AGB; and 3) the grassland AGB model’s performance is only slightly improved by adding Sentinel-1 SAR data and no more significantly positive synergistic effect on the model performance was observed. Overall, this study’s proposed satellite–ground collaborative monitoring method integrates the advantages of multisource remote sensing data and is expected to further improve the large-scale and high-accuracy monitoring capability for alpine grassland AGB during the wilting period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pretrial完成签到 ,获得积分10
刚刚
Jocelyn7发布了新的文献求助10
1秒前
wmmm发布了新的文献求助10
1秒前
余笙发布了新的文献求助10
2秒前
充电宝应助冷傲迎梦采纳,获得10
2秒前
彭于晏应助qi采纳,获得30
2秒前
科研通AI2S应助shor0414采纳,获得10
2秒前
ponyy发布了新的文献求助30
3秒前
秋之月发布了新的文献求助10
4秒前
skier发布了新的文献求助10
5秒前
balabala完成签到,获得积分20
5秒前
隐形曼青应助kb采纳,获得10
6秒前
yanyan发布了新的文献求助10
8秒前
繁笙完成签到 ,获得积分10
8秒前
8秒前
无言完成签到 ,获得积分10
8秒前
NONO完成签到 ,获得积分10
9秒前
星辰大海应助TT采纳,获得10
9秒前
11秒前
康康完成签到,获得积分10
11秒前
Xv完成签到,获得积分0
11秒前
14秒前
14秒前
香蕉觅云应助zfzf0422采纳,获得10
14秒前
15秒前
15秒前
李健应助爱听歌的向日葵采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
烟花应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得80
16秒前
所所应助科研通管家采纳,获得20
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得30
17秒前
婷婷发布了新的文献求助10
17秒前
zzt完成签到,获得积分10
19秒前
张小汉发布了新的文献求助30
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824