Accelerating GW Calculations of Point Defects with the Defect-Patched Screening Approximation

晶体缺陷 超单元 瓶颈 量子位元 电子 统计物理学 物理 屏蔽效应 量子 计算物理学 计算机科学 凝聚态物理 量子力学 雷雨 气象学 嵌入式系统
作者
Du Li,Zhen–Fei Liu,Li Yang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (24): 9435-9444 被引量:2
标识
DOI:10.1021/acs.jctc.3c01032
摘要

The GW approximation has been widely accepted as an ab initio tool for calculating defect levels with the many-electron effect included. However, the GW simulation cost increases dramatically with the system size, and unfortunately, large supercells are often required to model low-density defects that are experimentally relevant. In this work, we propose to accelerate GW calculations of point defects by reducing the simulation cost of many-electron screening, which is the primary computational bottleneck. The random-phase approximation of many-electron screening is divided into two parts: one is the intrinsic screening, calculated using a unit cell of pristine structures, and the other is the defect-induced screening, calculated using the supercell within a small energy window. Depending on specific defects, one may only need to consider the intrinsic screening or include the defect contribution. This approach avoids the summation of many conduction states of supercells and significantly reduces the simulation cost. We have applied it to calculate various point defects, including neutral and charged defects in two-dimensional and bulk systems with small or large bandgaps. The results are consistent with those from the direct GW simulations. This defect-patched screening approach not only clarifies the roles of defects in many-electron screening but also paves the way to fast screen defect structures/materials for novel applications, including single-photon sources, quantum qubits, and quantum sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助忧郁凌波采纳,获得10
1秒前
Maestro_S发布了新的文献求助10
1秒前
乾坤完成签到,获得积分10
1秒前
2秒前
WxChen完成签到,获得积分10
2秒前
椰子发布了新的文献求助10
2秒前
WJ发布了新的文献求助10
3秒前
xhuryts完成签到,获得积分10
3秒前
Ll发布了新的文献求助10
3秒前
徐翩跹完成签到,获得积分10
4秒前
不喝可乐发布了新的文献求助10
4秒前
Dream完成签到,获得积分10
4秒前
科研通AI5应助F冯采纳,获得10
4秒前
感谢大哥的帮助完成签到 ,获得积分10
4秒前
qiongqiong完成签到,获得积分10
4秒前
米娅完成签到,获得积分10
5秒前
5秒前
强健的妙菱完成签到,获得积分10
6秒前
6秒前
小蘑菇应助温柔若采纳,获得10
6秒前
李爱国应助通~采纳,获得10
6秒前
经竺应助小马哥采纳,获得10
6秒前
8秒前
单纯的芷蝶完成签到,获得积分10
8秒前
研友完成签到,获得积分10
8秒前
勤奋若风完成签到,获得积分10
8秒前
英姑应助每天都想下班采纳,获得10
9秒前
shooin完成签到,获得积分10
9秒前
佳佳发布了新的文献求助10
9秒前
MADKAI发布了新的文献求助10
9秒前
lin完成签到,获得积分20
10秒前
思源应助科研民工采纳,获得10
10秒前
忧郁凌波完成签到,获得积分10
10秒前
姜姜姜完成签到 ,获得积分10
11秒前
凶狠的绿兰完成签到,获得积分10
12秒前
多多少少忖测的情完成签到,获得积分10
12秒前
科研通AI5应助兴奋的宛白采纳,获得10
13秒前
14秒前
zhanlonglsj发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740