Analysis of the effect of formulation properties and process parameters on granule formation in twin-screw wet granulation

造粒 颗粒(地质) 溶解度 活性成分 粒径 材料科学 结块 粒度分布 化学工程 色谱法 化学 复合材料 有机化学 生物信息学 生物 工程类
作者
Michiel Peeters,Ana Alejandra Barrera Jiménez,Kensaku Matsunami,Michaël Ghijs,Eduardo S. Schultz,Mina Roudgar,Tamás Vígh,F. J. Stauffer,Ingmar Nopens,Thomas De Beer
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:650: 123671-123671 被引量:7
标识
DOI:10.1016/j.ijpharm.2023.123671
摘要

In the last few years, twin-screw wet granulation (TSWG) has become one of the key continuous pharmaceutical unit operations. Despite the many studies that have been performed, only little is known about the effect of the starting material properties on the stepwise granule formation along the length of the twin-screw granulator (TSG) barrel. Hence, this study obtained a detailed understanding of the effect of formulation properties (i.e., Active Pharmaceutical Ingredient (API) properties, formulation blend particle size distribution and formulation drug load) and process settings on granule formation in TSWG. An experimental set-up was used allowing the collection of granules at the different TSG compartments. Granules were characterized in terms of granule size, shape, binder liquid and API distributions. Liquid-to-solid (L/S) ratio was the only TSG process parameter impacting the granule size and shape evolution. Particle size and flow properties (e.g., flow rate index) had an important effect on the granule size and shape changes whereas water-related properties (e.g., water binding capacity and solubility) became influential at the last TSG compartments. The API solubility and L/S ratio were found to have a major impact on the distribution of binder liquid over the different granule size fractions. In the first TSG compartment (i.e., wetting compartment), the distribution of the API in the granules was influenced by its solubility in the granulation liquid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ws发布了新的文献求助10
刚刚
Bryn_Wang完成签到,获得积分10
刚刚
AlinaLee应助高高采纳,获得10
刚刚
无私芒果发布了新的文献求助10
刚刚
1秒前
泡泡发布了新的文献求助20
1秒前
1秒前
Yan完成签到,获得积分10
2秒前
2秒前
孙凤敏发布了新的文献求助10
2秒前
2秒前
2秒前
慕青应助烁烁采纳,获得10
3秒前
young完成签到,获得积分10
4秒前
Wendy发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
xiao发布了新的文献求助10
6秒前
6秒前
6秒前
人如果完成签到,获得积分10
7秒前
彩色的襄发布了新的文献求助10
7秒前
8秒前
8秒前
哈哈发布了新的文献求助10
10秒前
10秒前
10秒前
山与发布了新的文献求助10
10秒前
小蚂蚁完成签到 ,获得积分10
12秒前
12秒前
Snail6发布了新的文献求助10
12秒前
13秒前
13秒前
九九发布了新的文献求助10
13秒前
脑洞疼应助Brak采纳,获得10
14秒前
落寞的乐曲完成签到,获得积分10
15秒前
shangfeng发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560985
求助须知:如何正确求助?哪些是违规求助? 3134744
关于积分的说明 9409650
捐赠科研通 2834980
什么是DOI,文献DOI怎么找? 1558372
邀请新用户注册赠送积分活动 728097
科研通“疑难数据库(出版商)”最低求助积分说明 716686