Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems

光伏系统 太阳能 可靠性(半导体) 可靠性工程 光伏 相关性(法律) 环境科学 系统工程 工程类 计算机科学 电气工程 功率(物理) 物理 量子力学 政治学 法学
作者
Marco Ernst,X. Liu,Charles-Alexis Asselineau,Ding‐Shinn Chen,Cheng-Fu Huang,Alison Lennon
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:300: 117947-117947 被引量:18
标识
DOI:10.1016/j.enconman.2023.117947
摘要

Bifacial solar modules have emerged as a promising technology in utility-scale photovoltaic systems, experiencing significant growth and capturing a substantial market share worldwide, as reported by the International Technology Roadmap for Photovoltaic (ITRPV) 2023. Despite this progress, the potential of bifacial modules in rooftop applications remains largely unexplored. This paper aims to address this knowledge gap by conducting a comprehensive study utilizing Monte Carlo Ray Tracing techniques coupled with detailed electrical modelling. The primary objective of this study is to investigate the viability of implementing bifacial solar modules on rooftops by examining the potential energy yield gains. By conducting a detailed analysis on a representative rooftop in Canberra, Australia, real-world conditions, and variations are incorporated, providing a more accurate assessment of the energy yield gains achievable in such settings. The simulation results reveal that the implementation of bifacial solar modules on rooftops within Australia can result in energy yield gains of up to 22.6%. These findings demonstrate the considerable potential of bifacial technology in maximizing solar energy production in rooftop applications. The analysis shows significant implications of module and system design on the potential gain. For example, electrical optimisation of individual modules in a system accounted for 6.2% of the bifacial gain. The analysis considers full annual time-step simulation, typical mechanical mounting components, installation orientations and module characteristics, ensuring practical relevance and reliability of the results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助超帅的冷菱采纳,获得10
刚刚
汉堡包应助鸡柳先知采纳,获得10
刚刚
mmyhn发布了新的文献求助10
刚刚
HSY完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
duo完成签到,获得积分0
2秒前
哈哈完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Twonej应助pikopiko采纳,获得20
4秒前
虫虫发布了新的文献求助10
4秒前
freebird应助能干阿锦采纳,获得10
4秒前
freebird应助能干阿锦采纳,获得10
4秒前
wanci应助遇疯儿采纳,获得10
5秒前
6秒前
6秒前
6秒前
哈哈发布了新的文献求助10
6秒前
6秒前
6秒前
Rosaline发布了新的文献求助10
7秒前
7秒前
小二郎应助方小上采纳,获得10
7秒前
简单白梦完成签到,获得积分10
8秒前
尊敬乐蕊完成签到,获得积分10
8秒前
可以发布了新的文献求助10
10秒前
汉堡包应助111采纳,获得10
10秒前
杨硕士完成签到,获得积分10
11秒前
小蘑菇应助skyangar采纳,获得10
11秒前
Zever完成签到,获得积分10
11秒前
闵松岳完成签到,获得积分20
11秒前
12秒前
Leonard_Canon发布了新的文献求助30
13秒前
天天快乐应助zz采纳,获得30
13秒前
Orange应助malistm采纳,获得10
13秒前
科研通AI6应助超帅的冷菱采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653643
求助须知:如何正确求助?哪些是违规求助? 4790334
关于积分的说明 15065238
捐赠科研通 4812289
什么是DOI,文献DOI怎么找? 2574395
邀请新用户注册赠送积分活动 1529973
关于科研通互助平台的介绍 1488708