Weak Signal Asymptotics for Sequentially Randomized Experiments

后悔 缩放比例 数学 估计员 李普希茨连续性 极限(数学) 随机微分方程 应用数学 计算机科学 数学优化 统计物理学 统计 数学分析 物理 几何学
作者
Kuang Xu,Stefan Wager
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.4964
摘要

We use the lens of weak signal asymptotics to study a class of sequentially randomized experiments, including those that arise in solving multiarmed bandit problems. In an experiment with n time steps, we let the mean reward gaps between actions scale to the order [Formula: see text] to preserve the difficulty of the learning task as n grows. In this regime, we show that the sample paths of a class of sequentially randomized experiments—adapted to this scaling regime and with arm selection probabilities that vary continuously with state—converge weakly to a diffusion limit, given as the solution to a stochastic differential equation. The diffusion limit enables us to derive refined, instance-specific characterization of stochastic dynamics and to obtain several insights on the regret and belief evolution of a number of sequential experiments including Thompson sampling (but not upper-confidence bound, which does not satisfy our continuity assumption). We show that all sequential experiments whose randomization probabilities have a Lipschitz-continuous dependence on the observed data suffer from suboptimal regret performance when the reward gaps are relatively large. Conversely, we find that a version of Thompson sampling with an asymptotically uninformative prior variance achieves near-optimal instance-specific regret scaling, including with large reward gaps, but these good regret properties come at the cost of highly unstable posterior beliefs. This paper was accepted by Baris Ata, stochastic models and simulation. Supplemental Material: The data and online appendix are available at https://doi.org/10.1287/mnsc.2023.4964 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
科研狼小白完成签到,获得积分10
5秒前
6秒前
ddj完成签到 ,获得积分10
6秒前
cuc关注了科研通微信公众号
8秒前
Owen应助老爹不开车采纳,获得10
8秒前
受伤雁荷发布了新的文献求助10
10秒前
Eig发布了新的文献求助10
11秒前
13秒前
彭于晏应助yyy采纳,获得10
13秒前
sam发布了新的文献求助10
13秒前
5160完成签到,获得积分10
13秒前
CipherSage应助单纯的巧荷采纳,获得10
14秒前
研友_VZG7GZ应助sheep采纳,获得10
15秒前
19秒前
19秒前
19秒前
19秒前
sam完成签到,获得积分10
19秒前
lalala举报求助违规成功
20秒前
加菲丰丰举报求助违规成功
20秒前
aldehyde举报求助违规成功
20秒前
20秒前
乐乐应助嘻嘻滑呀采纳,获得10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
外向从灵应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
Lucas应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265086
求助须知:如何正确求助?哪些是违规求助? 2905061
关于积分的说明 8332367
捐赠科研通 2575426
什么是DOI,文献DOI怎么找? 1399788
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633376