IFBCLNet: Spatio-temporal frequency feature extraction-based MI-EEG classification convolutional network

计算机科学 脑-机接口 脑电图 模式识别(心理学) 特征提取 卷积神经网络 人工智能 运动表象 特征(语言学) 解码方法 语音识别 心理学 语言学 哲学 精神科 电信
作者
Jianshuai Cao,Guanghui Li,Jiahua Shen,Chenglong Dai
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106092-106092 被引量:12
标识
DOI:10.1016/j.bspc.2024.106092
摘要

Brain-computer interfaces (BCIs) provide a way for individuals to interact with and control external devices using their brain signals. Among the most promising BCI methods, the motor imagery (MI) paradigm-based electroencephalogram (EEG) is widely used due to its non-invasive instrumentation and ease of experimentation. However, traditional decoding methods face challenges in extracting spatio-temporal-frequency features from EEG signals. In this paper, we present a novel network framework (IFBCLNet) that integrates an interpretable filter bank with the convolutional neural network (CNN) and the long and short-term memory (LSTM) module. IFBCLNet demonstrates unique spatio-temporal frequency feature extraction capabilities, allowing for accurate interpretation of human intentions. Extensive experiments conducted on three EEG datasets (BCICIV-2a, BCICIV-2b, and High Gamma Dataset) reveal that our proposed framework achieves high accuracy rates of 78.79%, 87.76%, and 95.35%, respectively. The results also show the superiority of our model over recent baseline models. Additionally, the cross-subject experiments on the BCICIV-2a, BCICIV-2b, and HGD datasets achieved high accuracies of 81.23%, 90.29%, and 96.74%, respectively, indicate that our model can well deal with different types of intentions from various subjects, which is more suitable for BCI-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niu发布了新的文献求助10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
jojo应助科研通管家采纳,获得10
1秒前
ZM发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助不打地洞的土拨鼠采纳,获得10
1秒前
nuaa_shy应助科研通管家采纳,获得10
1秒前
jwx应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
渐变映射发布了新的文献求助10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI6.1应助嘉人采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
jojo应助科研通管家采纳,获得10
2秒前
y741应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
Ustinian发布了新的文献求助10
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
执着谷兰发布了新的文献求助20
3秒前
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
3秒前
jwx应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026