A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

计算机科学 断层(地质) 人工智能 特征(语言学) 领域(数学分析) 领域知识 学习迁移 数据挖掘 特征选择 机器学习 数学分析 语言学 哲学 数学 地震学 地质学
作者
Tianyu Gao,Jingli Yang,Qing Tang
出处
期刊:Information Fusion [Elsevier]
卷期号:106: 102278-102278 被引量:34
标识
DOI:10.1016/j.inffus.2024.102278
摘要

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss发布了新的文献求助10
刚刚
zyz完成签到,获得积分10
刚刚
lilioa85发布了新的文献求助20
刚刚
orangelion完成签到,获得积分10
刚刚
大舟Austin完成签到 ,获得积分10
1秒前
DJ完成签到,获得积分10
1秒前
1秒前
奋斗初南完成签到,获得积分10
1秒前
桐桐应助summer采纳,获得10
1秒前
???完成签到,获得积分10
1秒前
充电宝应助luu采纳,获得10
1秒前
用九完成签到,获得积分10
1秒前
2秒前
LV发布了新的文献求助10
2秒前
huhu完成签到,获得积分20
3秒前
4秒前
jy完成签到,获得积分10
4秒前
完美世界应助jennifer采纳,获得10
5秒前
5秒前
lsjdsdb完成签到,获得积分10
5秒前
寻水的鱼完成签到,获得积分10
6秒前
叶博完成签到,获得积分10
6秒前
土书完成签到,获得积分10
6秒前
科研通AI2S应助erhgbw采纳,获得10
6秒前
情怀应助927采纳,获得10
6秒前
潘婷婷呀完成签到,获得积分10
7秒前
中和皇极完成签到,获得积分0
8秒前
sss完成签到,获得积分10
8秒前
在水一方应助SH采纳,获得10
8秒前
huhu发布了新的文献求助10
9秒前
Da完成签到,获得积分10
10秒前
11秒前
12秒前
小鱼爱吃肉应助叶博采纳,获得10
12秒前
12秒前
立里完成签到,获得积分10
12秒前
12秒前
yu完成签到,获得积分10
12秒前
AYEFORBIDER发布了新的文献求助20
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934083
关于积分的说明 8466490
捐赠科研通 2607435
什么是DOI,文献DOI怎么找? 1423733
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645297