A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

计算机科学 断层(地质) 人工智能 特征(语言学) 领域(数学分析) 领域知识 学习迁移 数据挖掘 特征选择 机器学习 数学分析 语言学 哲学 数学 地震学 地质学
作者
Tianyu Gao,Jingli Yang,Qing Tang
出处
期刊:Information Fusion [Elsevier]
卷期号:106: 102278-102278 被引量:79
标识
DOI:10.1016/j.inffus.2024.102278
摘要

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qww完成签到,获得积分10
1秒前
无敌暴龙战神完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
2秒前
斯文败类应助邱洪晓采纳,获得10
2秒前
3秒前
1900完成签到,获得积分10
3秒前
涛声依旧发布了新的文献求助10
3秒前
科研式发布了新的文献求助10
4秒前
uu完成签到 ,获得积分10
4秒前
深情安青应助抽纸盒采纳,获得10
4秒前
眼睛大的黑猫完成签到,获得积分10
4秒前
5秒前
wanci应助bing采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
一念初见发布了新的文献求助10
6秒前
水水的橙子完成签到,获得积分10
7秒前
充电宝应助ddddd采纳,获得10
7秒前
7秒前
李盛男完成签到,获得积分10
7秒前
罗玉完成签到,获得积分10
7秒前
qilin发布了新的文献求助10
8秒前
彭于晏应助niko采纳,获得10
8秒前
h41692011完成签到 ,获得积分10
8秒前
8秒前
伟蓓1314发布了新的文献求助10
8秒前
shfgref完成签到,获得积分10
9秒前
PFD000发布了新的文献求助20
9秒前
9秒前
9秒前
风吹麦田应助huhdcid采纳,获得50
9秒前
JThuo完成签到,获得积分10
9秒前
10秒前
lllly发布了新的文献求助10
10秒前
东方元语应助doing采纳,获得20
10秒前
10秒前
在英快尔发布了新的文献求助10
10秒前
NexusExplorer应助幽默书瑶采纳,获得10
10秒前
Littlerain~完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123