A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

计算机科学 断层(地质) 人工智能 特征(语言学) 领域(数学分析) 领域知识 学习迁移 数据挖掘 特征选择 机器学习 数学分析 语言学 哲学 数学 地震学 地质学
作者
Tianyu Gao,Jingli Yang,Qing Tang
出处
期刊:Information Fusion [Elsevier]
卷期号:106: 102278-102278 被引量:34
标识
DOI:10.1016/j.inffus.2024.102278
摘要

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yml发布了新的文献求助10
1秒前
ixxxy完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
2秒前
你hao完成签到,获得积分10
2秒前
wwx发布了新的文献求助10
2秒前
西红柿有股番茄味给西红柿有股番茄味的求助进行了留言
2秒前
斯文芷荷发布了新的文献求助10
3秒前
3秒前
恣意完成签到,获得积分10
4秒前
安凉关注了科研通微信公众号
4秒前
通~发布了新的文献求助10
5秒前
山乞凡完成签到 ,获得积分10
5秒前
5秒前
星辰大海应助粥粥采纳,获得10
6秒前
科研通AI5应助朴素小鸟胃采纳,获得10
6秒前
彭于晏应助拈花采纳,获得10
6秒前
NN发布了新的文献求助20
6秒前
烟雨行舟发布了新的文献求助10
7秒前
huang完成签到,获得积分20
7秒前
君莫笑完成签到 ,获得积分10
8秒前
赘婿应助ruby采纳,获得10
8秒前
爱科研的佳慧完成签到,获得积分10
9秒前
小只bb完成签到,获得积分10
9秒前
10秒前
Akim应助lxh2424采纳,获得10
10秒前
爆米花应助dingdong采纳,获得10
11秒前
xtqgyy驳回了大个应助
11秒前
赘婿应助斯文芷荷采纳,获得10
11秒前
kss完成签到,获得积分10
11秒前
12秒前
12秒前
Hupoo完成签到,获得积分10
12秒前
田様应助demonox采纳,获得10
12秒前
粥粥完成签到,获得积分10
12秒前
13秒前
光电很亮完成签到,获得积分10
13秒前
励志梦发布了新的文献求助10
13秒前
Fluoxetine完成签到,获得积分10
14秒前
14秒前
冰糖葫芦娃完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794