A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

计算机科学 断层(地质) 人工智能 特征(语言学) 领域(数学分析) 领域知识 学习迁移 数据挖掘 特征选择 机器学习 数学分析 语言学 哲学 数学 地震学 地质学
作者
Tianyu Gao,Jingli Yang,Qing Tang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:106: 102278-102278 被引量:61
标识
DOI:10.1016/j.inffus.2024.102278
摘要

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
dadadaxia发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
kyo发布了新的文献求助30
2秒前
帅气鹭洋完成签到,获得积分10
4秒前
4秒前
jssssssss发布了新的文献求助10
5秒前
5秒前
6秒前
现代的访曼应助涵涵涵采纳,获得10
6秒前
大Doctor陈发布了新的文献求助10
7秒前
7秒前
8秒前
海晏河清发布了新的文献求助10
8秒前
Yvette完成签到 ,获得积分10
9秒前
lilianan发布了新的文献求助10
9秒前
daisies应助303采纳,获得10
10秒前
隐形曼青应助ff采纳,获得10
11秒前
11秒前
sume24完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
乘风破浪完成签到 ,获得积分10
13秒前
田様应助初之采纳,获得10
13秒前
苏素肃发布了新的文献求助30
13秒前
16秒前
tt耶发布了新的文献求助30
17秒前
jssssssss完成签到,获得积分10
18秒前
18秒前
ff完成签到,获得积分10
19秒前
水滴完成签到,获得积分10
19秒前
21秒前
22秒前
22秒前
黑眼圈发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844