A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

计算机科学 断层(地质) 人工智能 特征(语言学) 领域(数学分析) 领域知识 学习迁移 数据挖掘 特征选择 机器学习 数学分析 语言学 哲学 数学 地震学 地质学
作者
Tianyu Gao,Jingli Yang,Qing Tang
出处
期刊:Information Fusion [Elsevier]
卷期号:106: 102278-102278 被引量:79
标识
DOI:10.1016/j.inffus.2024.102278
摘要

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiu发布了新的文献求助10
刚刚
1秒前
科研通AI6应助犹豫梦旋采纳,获得10
2秒前
2秒前
billyin完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
果子发布了新的文献求助10
3秒前
可爱的函函应助杨洋采纳,获得10
3秒前
张弛华完成签到,获得积分10
4秒前
rongrong完成签到,获得积分10
4秒前
4秒前
充电宝应助闪闪大米采纳,获得10
4秒前
ding应助阳光鹭洋采纳,获得10
5秒前
羊咩咩哒完成签到,获得积分10
5秒前
7秒前
cmmmmmm完成签到,获得积分10
7秒前
7秒前
简简单单完成签到,获得积分10
7秒前
有机小鸟发布了新的文献求助10
7秒前
xingxinghan完成签到 ,获得积分10
8秒前
资浩阑完成签到,获得积分10
9秒前
星空之下ssr完成签到,获得积分10
9秒前
77发布了新的文献求助10
9秒前
Jimmy Ko完成签到,获得积分10
9秒前
充电宝应助Pom采纳,获得10
10秒前
10秒前
jwxstc发布了新的文献求助10
10秒前
cola121完成签到 ,获得积分10
10秒前
qiu完成签到,获得积分10
12秒前
Jimmy Ko发布了新的文献求助10
12秒前
聪明怜阳发布了新的文献求助10
13秒前
13秒前
13秒前
whs完成签到,获得积分10
13秒前
伍纲稳发布了新的文献求助10
14秒前
华仔应助能干砖家采纳,获得10
14秒前
14秒前
英姑应助张mingyu123采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382