HyGAnno: Hybrid graph neural network-based cell type annotation for single-cell ATAC sequencing data

注释 数据类型 电池类型 计算生物学 计算机科学 人工智能 生物 细胞 遗传学 程序设计语言
作者
W. Zhang,Chen Yang,Bo Wen Liu,Martin Loza,Sung‐Joon Park,Kenta Nakai
标识
DOI:10.1101/2023.11.29.569114
摘要

Abstract Reliable cell type annotations are crucial for investigating cellular heterogeneity in single-cell omics data. Although various computational approaches have been proposed for single-cell RNA sequencing (scRNA-seq) annotation, high-quality cell labels are still lacking in single-cell ATAC sequencing (scATAC-seq) data, because of extreme sparsity and inconsistent chromatin accessibility between datasets. This calls for novel cell type annotation methods in scATAC-seq, to better explore cell type-specific gene regulatory mechanisms and provide a complementary epigenomic layer to scRNA-seq data. Here, we present a novel automated cell annotation method that transfers cell type information from a well-labeled scRNA-seq reference to an unlabeled scATAC-seq target, via a parallel graph neural network, in a semi-supervised manner. Unlike existing methods that utilize only gene expression or gene activity features, HyGAnno integrates genomewide accessibility peak features to facilitate the training process. In addition, HyGAnno reconstructs a reference-target cell graph that can be used to detect cells with low prediction reliability, according to their specific graph connectivity patterns. HyGAnno was tested using large datasets and demonstrated the advantages of accurate cell annotation, interpretable cell embedding, robustness to noisy reference data, and adaptability to tumor tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN发布了新的文献求助30
1秒前
嘲鸫完成签到,获得积分10
1秒前
刘胖胖发布了新的文献求助30
1秒前
1秒前
李晓彤发布了新的文献求助10
2秒前
2秒前
洁净的元蝶完成签到,获得积分10
2秒前
安静的映萱完成签到,获得积分10
2秒前
香蕉冰真发布了新的文献求助10
2秒前
pray完成签到,获得积分20
3秒前
照亮世界的ay完成签到,获得积分10
3秒前
城南以南发布了新的文献求助10
4秒前
13击发布了新的文献求助10
4秒前
4秒前
buno应助zyz1132采纳,获得10
4秒前
4秒前
共享精神应助MX001采纳,获得10
4秒前
5秒前
5秒前
怕孤单的嚣完成签到,获得积分10
5秒前
先生完成签到,获得积分10
5秒前
5秒前
zsy发布了新的文献求助10
5秒前
5秒前
苏silence发布了新的文献求助10
6秒前
我爱学习发布了新的文献求助10
6秒前
6秒前
MouLi应助again采纳,获得10
6秒前
int0完成签到,获得积分10
6秒前
6秒前
6秒前
天天快乐应助塵埃采纳,获得10
7秒前
汉堡包应助如常采纳,获得10
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
郑大钱发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017