HyGAnno: Hybrid graph neural network-based cell type annotation for single-cell ATAC sequencing data

注释 数据类型 电池类型 计算生物学 计算机科学 人工智能 生物 细胞 遗传学 程序设计语言
作者
W. Zhang,Chen Yang,Bo Wen Liu,Martin Loza,Sung‐Joon Park,Kenta Nakai
标识
DOI:10.1101/2023.11.29.569114
摘要

Abstract Reliable cell type annotations are crucial for investigating cellular heterogeneity in single-cell omics data. Although various computational approaches have been proposed for single-cell RNA sequencing (scRNA-seq) annotation, high-quality cell labels are still lacking in single-cell ATAC sequencing (scATAC-seq) data, because of extreme sparsity and inconsistent chromatin accessibility between datasets. This calls for novel cell type annotation methods in scATAC-seq, to better explore cell type-specific gene regulatory mechanisms and provide a complementary epigenomic layer to scRNA-seq data. Here, we present a novel automated cell annotation method that transfers cell type information from a well-labeled scRNA-seq reference to an unlabeled scATAC-seq target, via a parallel graph neural network, in a semi-supervised manner. Unlike existing methods that utilize only gene expression or gene activity features, HyGAnno integrates genomewide accessibility peak features to facilitate the training process. In addition, HyGAnno reconstructs a reference-target cell graph that can be used to detect cells with low prediction reliability, according to their specific graph connectivity patterns. HyGAnno was tested using large datasets and demonstrated the advantages of accurate cell annotation, interpretable cell embedding, robustness to noisy reference data, and adaptability to tumor tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
xxzztt发布了新的文献求助10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
2秒前
NTUxs发布了新的文献求助10
2秒前
英姑应助hylqj123采纳,获得10
3秒前
4秒前
qiao发布了新的文献求助10
4秒前
天真豪英完成签到 ,获得积分10
4秒前
小王完成签到,获得积分10
4秒前
4秒前
5秒前
天天快乐应助Always采纳,获得10
5秒前
5秒前
汉堡包应助铃兰采纳,获得10
6秒前
凝凝小发布了新的文献求助10
6秒前
新晋牛马发布了新的文献求助10
6秒前
6秒前
922完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810