HyGAnno: Hybrid graph neural network-based cell type annotation for single-cell ATAC sequencing data

注释 数据类型 电池类型 计算生物学 计算机科学 人工智能 生物 细胞 遗传学 程序设计语言
作者
W. Zhang,Chen Yang,Bo Wen Liu,Martin Loza,Sung‐Joon Park,Kenta Nakai
标识
DOI:10.1101/2023.11.29.569114
摘要

Abstract Reliable cell type annotations are crucial for investigating cellular heterogeneity in single-cell omics data. Although various computational approaches have been proposed for single-cell RNA sequencing (scRNA-seq) annotation, high-quality cell labels are still lacking in single-cell ATAC sequencing (scATAC-seq) data, because of extreme sparsity and inconsistent chromatin accessibility between datasets. This calls for novel cell type annotation methods in scATAC-seq, to better explore cell type-specific gene regulatory mechanisms and provide a complementary epigenomic layer to scRNA-seq data. Here, we present a novel automated cell annotation method that transfers cell type information from a well-labeled scRNA-seq reference to an unlabeled scATAC-seq target, via a parallel graph neural network, in a semi-supervised manner. Unlike existing methods that utilize only gene expression or gene activity features, HyGAnno integrates genomewide accessibility peak features to facilitate the training process. In addition, HyGAnno reconstructs a reference-target cell graph that can be used to detect cells with low prediction reliability, according to their specific graph connectivity patterns. HyGAnno was tested using large datasets and demonstrated the advantages of accurate cell annotation, interpretable cell embedding, robustness to noisy reference data, and adaptability to tumor tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zink采纳,获得10
1秒前
科目三应助Jimmy采纳,获得10
1秒前
1秒前
1秒前
芋圆Z.发布了新的文献求助10
2秒前
2秒前
东皇太憨完成签到,获得积分10
2秒前
2秒前
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
orixero应助韭黄采纳,获得10
4秒前
gnufgg完成签到,获得积分10
4秒前
科研通AI5应助tabor采纳,获得10
4秒前
4秒前
互助互惠互通完成签到,获得积分10
4秒前
脑洞疼应助ziyiziyi采纳,获得10
5秒前
5秒前
5秒前
屹舟完成签到,获得积分10
6秒前
zjudxn关注了科研通微信公众号
6秒前
7秒前
7秒前
科研通AI5应助hu970采纳,获得10
7秒前
7秒前
艺玲发布了新的文献求助10
8秒前
咚咚咚完成签到,获得积分10
8秒前
芋圆Z.完成签到,获得积分10
8秒前
atad2发布了新的文献求助10
8秒前
li梨完成签到,获得积分10
8秒前
9秒前
晏小敏完成签到,获得积分10
9秒前
爆米花应助风中寄云采纳,获得10
10秒前
屹舟发布了新的文献求助10
10秒前
Dou完成签到,获得积分10
10秒前
白泯完成签到,获得积分10
11秒前
1ssd发布了新的文献求助10
11秒前
667发布了新的文献求助10
11秒前
小二郎应助辰柒采纳,获得10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759