Text dialogue analysis Based ChatGPT for Primary Screening of Mild Cognitive Impairment (Preprint)

自然语言处理 短语 计算机科学 词汇 语法 人工智能 集合(抽象数据类型) 认知 语义学(计算机科学) 语法 心理学 语言学 哲学 神经科学 程序设计语言
作者
Changyu Wang,Siru Liu,Aiqing Li,Jialin Liu
出处
期刊:Journal of Medical Internet Research 卷期号:25: e51501-e51501
标识
DOI:10.2196/51501
摘要

Background Artificial intelligence models tailored to diagnose cognitive impairment have shown excellent results. However, it is unclear whether large linguistic models can rival specialized models by text alone. Objective In this study, we explored the performance of ChatGPT for primary screening of mild cognitive impairment (MCI) and standardized the design steps and components of the prompts. Methods We gathered a total of 174 participants from the DementiaBank screening and classified 70% of them into the training set and 30% of them into the test set. Only text dialogues were kept. Sentences were cleaned using a macro code, followed by a manual check. The prompt consisted of 5 main parts, including character setting, scoring system setting, indicator setting, output setting, and explanatory information setting. Three dimensions of variables from published studies were included: vocabulary (ie, word frequency and word ratio, phrase frequency and phrase ratio, and lexical complexity), syntax and grammar (ie, syntactic complexity and grammatical components), and semantics (ie, semantic density and semantic coherence). We used R 4.3.0. for the analysis of variables and diagnostic indicators. Results Three additional indicators related to the severity of MCI were incorporated into the final prompt for the model. These indicators were effective in discriminating between MCI and cognitively normal participants: tip-of-the-tongue phenomenon (P<.001), difficulty with complex ideas (P<.001), and memory issues (P<.001). The final GPT-4 model achieved a sensitivity of 0.8636, a specificity of 0.9487, and an area under the curve of 0.9062 on the training set; on the test set, the sensitivity, specificity, and area under the curve reached 0.7727, 0.8333, and 0.8030, respectively. Conclusions ChatGPT was effective in the primary screening of participants with possible MCI. Improved standardization of prompts by clinicians would also improve the performance of the model. It is important to note that ChatGPT is not a substitute for a clinician making a diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苦逼发布了新的文献求助10
刚刚
1秒前
金秋时节雨纷纷完成签到,获得积分10
1秒前
务实老虎完成签到,获得积分10
1秒前
热心翠曼完成签到,获得积分20
2秒前
3秒前
Flyzhang完成签到,获得积分10
4秒前
rcrc111完成签到 ,获得积分10
5秒前
东邪西毒加任我行完成签到,获得积分10
5秒前
XXDD小吴完成签到,获得积分10
5秒前
5秒前
盾哥完成签到 ,获得积分10
6秒前
木棉发布了新的文献求助20
6秒前
6秒前
在水一方应助jenny_shjn采纳,获得10
6秒前
7秒前
8秒前
打打应助westbobo采纳,获得10
8秒前
Agoni发布了新的文献求助10
10秒前
万能图书馆应助wang采纳,获得10
11秒前
称心的语芙完成签到,获得积分10
12秒前
xianluomeihao发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
浪子发布了新的文献求助10
18秒前
丘比特应助nong12123采纳,获得10
18秒前
lisa发布了新的文献求助10
18秒前
开放的难胜完成签到,获得积分10
19秒前
39完成签到,获得积分10
19秒前
magnolia5335完成签到 ,获得积分10
19秒前
忧郁小刺猬完成签到,获得积分10
20秒前
五弦关注了科研通微信公众号
20秒前
westbobo发布了新的文献求助10
21秒前
猴猴发布了新的文献求助10
21秒前
21秒前
俏皮咖啡发布了新的文献求助10
21秒前
loknarad完成签到,获得积分10
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441783
求助须知:如何正确求助?哪些是违规求助? 3038330
关于积分的说明 8971566
捐赠科研通 2726684
什么是DOI,文献DOI怎么找? 1495564
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688271