纳米载体
化学
炎症性肠病
生物利用度
药理学
活性氧
生物化学
药物输送
生物
医学
病理
有机化学
疾病
作者
Xiumin Zhang,Wentao Su,Yannan Chen,Shanghua Xing,Michael Spiteller,Yukun Song,Mingqian Tan
标识
DOI:10.1016/j.ijbiomac.2023.128494
摘要
Dextran sulfate sodium is one of the important members in the field of polysaccharide biotechnology, which can induce inflammatory bowel disease (IBD) in the gastrointestinal tract. Nevertheless, the application of astaxanthin (AST) and epigallocatechin-3-gallate (EGCG), known for their pronounced antioxidant and anti-inflammatory properties, is encumbered by limited stability and bioavailability. To surmount this challenge, dual nutritional macromolecular nanoparticles were provided for alleviating IBD. The forementioned strategy entailed the utilization of EGCG as a wall material via the Mannich reaction, resulting in the creation of specialized nanocarriers capable of mitochondrial targeting and glutathione-responsive AST delivery. In vitro investigations, these nanocarriers demonstrated an enhanced propensity for mitochondrial accumulation, leading to proficient elimination of reactive oxygen species and preservation of optimal mitochondrial membrane potential about 1.5 times stronger than free AST and EGCG. Crucially, in vivo experiments showed that the colon length of IBD mice treated with these nanocarriers increased by 51.29 % and facilitated the polarization of M2 macrophages. Moreover, the assimilation of these nanocarriers exerted a favorable impact on the composition of gut microbiota. These findings underscore the immense potential of dual nutrition nanocarriers in contemporaneously delivering hydrophobic biological activators through oral absorption, thereby presenting a highly promising avenue for combating IBD.
科研通智能强力驱动
Strongly Powered by AbleSci AI