降噪
噪音(视频)
主成分分析
模式识别(心理学)
人工智能
计算机科学
阈值
数学
差异(会计)
统计
图像(数学)
会计
业务
作者
Rafael Neto Henriques,Andrada Ianuş,Lisa Novello,Jorge Jovicich,Sune Nørhøj Jespersen,Noam Shemesh
摘要
Abstract Marčenko-Pastur PCA (MPPCA) denoising is emerging as an effective means for noise suppression in MR imaging (MRI) acquisitions with redundant dimensions. However, MPPCA performance can be severely compromised by spatially correlated noise—an issue typically affecting most modern MRI acquisitions—almost to the point of returning the original images with little or no noise removal. In this study, we explore different threshold criteria for principal component analysis (PCA) component classification that enable efficient and robust denoising of MRI data even when noise exhibits high spatial correlations, especially in cases where data are acquired with Partial Fourier and when only magnitude data are available. We show that efficient denoising can be achieved by incorporating a-priori information about the noise variance into PCA denoising thresholding. Based on this, two denoising strategies developed here are: 1) General PCA (GPCA) denoising that uses a-priori noise variance estimates without assuming specific noise distributions; and 2) Threshold PCA (TPCA) denoising which removes noise components with a threshold computed from a-priori estimated noise variance to determine the upper bound of the Marčenko-Pastur (MP) distribution. These strategies were tested in simulations with known ground truth and applied for denoising diffusion MRI data acquired using pre-clinical (16.4T) and clinical (3T) MRI scanners. In synthetic phantoms, MPPCA denoising failed to denoise spatially correlated data, while GPCA and TPCA better classified components as dominated by signal/noise. In cases where the noise variance was not accurately estimated (as can be the case in many practical scenarios), TPCA still provides excellent denoising performance. Our experiments in pre-clinical diffusion data with highly corrupted by spatial correlated noise revealed that both GPCA and TPCA robustly denoised the data while MPPCA denoising failed. In in vivo diffusion MRI data acquired on a clinical scanner in healthy subjects, MPPCA weakly removed noised, while TPCA was found to have the best performance, likely due to misestimations of the noise variance. Thus, our work shows that these novel denoising approaches can strongly benefit future pre-clinical and clinical MRI applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI