Efficient PCA denoising of spatially correlated redundant MRI data

降噪 噪音(视频) 主成分分析 模式识别(心理学) 人工智能 计算机科学 阈值 数学 差异(会计) 统计 图像(数学) 会计 业务
作者
Rafael Neto Henriques,Andrada Ianuş,Lisa Novello,Jorge Jovicich,Sune Nørhøj Jespersen,Noam Shemesh
标识
DOI:10.1162/imag_a_00049
摘要

Abstract Marčenko-Pastur PCA (MPPCA) denoising is emerging as an effective means for noise suppression in MR imaging (MRI) acquisitions with redundant dimensions. However, MPPCA performance can be severely compromised by spatially correlated noise—an issue typically affecting most modern MRI acquisitions—almost to the point of returning the original images with little or no noise removal. In this study, we explore different threshold criteria for principal component analysis (PCA) component classification that enable efficient and robust denoising of MRI data even when noise exhibits high spatial correlations, especially in cases where data are acquired with Partial Fourier and when only magnitude data are available. We show that efficient denoising can be achieved by incorporating a-priori information about the noise variance into PCA denoising thresholding. Based on this, two denoising strategies developed here are: 1) General PCA (GPCA) denoising that uses a-priori noise variance estimates without assuming specific noise distributions; and 2) Threshold PCA (TPCA) denoising which removes noise components with a threshold computed from a-priori estimated noise variance to determine the upper bound of the Marčenko-Pastur (MP) distribution. These strategies were tested in simulations with known ground truth and applied for denoising diffusion MRI data acquired using pre-clinical (16.4T) and clinical (3T) MRI scanners. In synthetic phantoms, MPPCA denoising failed to denoise spatially correlated data, while GPCA and TPCA better classified components as dominated by signal/noise. In cases where the noise variance was not accurately estimated (as can be the case in many practical scenarios), TPCA still provides excellent denoising performance. Our experiments in pre-clinical diffusion data with highly corrupted by spatial correlated noise revealed that both GPCA and TPCA robustly denoised the data while MPPCA denoising failed. In in vivo diffusion MRI data acquired on a clinical scanner in healthy subjects, MPPCA weakly removed noised, while TPCA was found to have the best performance, likely due to misestimations of the noise variance. Thus, our work shows that these novel denoising approaches can strongly benefit future pre-clinical and clinical MRI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zee完成签到 ,获得积分20
刚刚
单薄明雪完成签到,获得积分10
刚刚
1秒前
万能图书馆应助Godspeed采纳,获得10
1秒前
孟陬十一发布了新的文献求助10
1秒前
vivi猫小咪完成签到,获得积分10
1秒前
1秒前
bkagyin应助amumu采纳,获得10
2秒前
南方姑娘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
丘比特应助Wu采纳,获得10
2秒前
3秒前
乐乐应助luuuuuing采纳,获得30
3秒前
4秒前
丘比特应助anan采纳,获得10
4秒前
4秒前
动人的老黑完成签到 ,获得积分10
5秒前
星星泡饭发布了新的文献求助10
5秒前
6秒前
Silence完成签到,获得积分10
6秒前
yan儿发布了新的文献求助10
7秒前
pearl完成签到,获得积分10
8秒前
hahah发布了新的文献求助10
8秒前
请叫我风吹麦浪应助胖豆采纳,获得10
8秒前
无花果应助幸福胡萝卜采纳,获得10
8秒前
9秒前
卡卡发布了新的文献求助10
9秒前
wanci应助风趣的天真采纳,获得10
9秒前
Silence发布了新的文献求助10
9秒前
清爽老九发布了新的文献求助100
9秒前
10秒前
衔尾蛇发布了新的文献求助10
10秒前
小蔡会有猫的完成签到,获得积分10
10秒前
zhai发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762