清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient PCA denoising of spatially correlated redundant MRI data

降噪 噪音(视频) 主成分分析 模式识别(心理学) 人工智能 计算机科学 阈值 数学 差异(会计) 统计 图像(数学) 会计 业务
作者
Rafael Neto Henriques,Andrada Ianuş,Lisa Novello,Jorge Jovicich,Sune Nørhøj Jespersen,Noam Shemesh
标识
DOI:10.1162/imag_a_00049
摘要

Abstract Marčenko-Pastur PCA (MPPCA) denoising is emerging as an effective means for noise suppression in MR imaging (MRI) acquisitions with redundant dimensions. However, MPPCA performance can be severely compromised by spatially correlated noise—an issue typically affecting most modern MRI acquisitions—almost to the point of returning the original images with little or no noise removal. In this study, we explore different threshold criteria for principal component analysis (PCA) component classification that enable efficient and robust denoising of MRI data even when noise exhibits high spatial correlations, especially in cases where data are acquired with Partial Fourier and when only magnitude data are available. We show that efficient denoising can be achieved by incorporating a-priori information about the noise variance into PCA denoising thresholding. Based on this, two denoising strategies developed here are: 1) General PCA (GPCA) denoising that uses a-priori noise variance estimates without assuming specific noise distributions; and 2) Threshold PCA (TPCA) denoising which removes noise components with a threshold computed from a-priori estimated noise variance to determine the upper bound of the Marčenko-Pastur (MP) distribution. These strategies were tested in simulations with known ground truth and applied for denoising diffusion MRI data acquired using pre-clinical (16.4T) and clinical (3T) MRI scanners. In synthetic phantoms, MPPCA denoising failed to denoise spatially correlated data, while GPCA and TPCA better classified components as dominated by signal/noise. In cases where the noise variance was not accurately estimated (as can be the case in many practical scenarios), TPCA still provides excellent denoising performance. Our experiments in pre-clinical diffusion data with highly corrupted by spatial correlated noise revealed that both GPCA and TPCA robustly denoised the data while MPPCA denoising failed. In in vivo diffusion MRI data acquired on a clinical scanner in healthy subjects, MPPCA weakly removed noised, while TPCA was found to have the best performance, likely due to misestimations of the noise variance. Thus, our work shows that these novel denoising approaches can strongly benefit future pre-clinical and clinical MRI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的可乐完成签到 ,获得积分10
6秒前
Axel完成签到,获得积分10
20秒前
24秒前
29秒前
领导范儿应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
xiaoblue完成签到,获得积分10
1分钟前
落尘府完成签到 ,获得积分10
1分钟前
1分钟前
虚拟的成仁完成签到 ,获得积分10
1分钟前
随心所欲完成签到 ,获得积分10
2分钟前
在水一方应助超帅的天曼采纳,获得10
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
xiaoqingnian完成签到,获得积分10
2分钟前
2分钟前
3分钟前
Ricardo完成签到 ,获得积分10
3分钟前
bkagyin应助勇往直前采纳,获得10
3分钟前
3分钟前
幸运的姜姜完成签到 ,获得积分10
3分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
3分钟前
火星的雪完成签到 ,获得积分0
3分钟前
勇往直前发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
箫笛完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
直率觅松发布了新的文献求助40
5分钟前
6分钟前
majx发布了新的文献求助10
6分钟前
直率觅松完成签到,获得积分10
6分钟前
常有李完成签到,获得积分10
6分钟前
小马甲应助majx采纳,获得10
6分钟前
科研通AI6应助科科研研up采纳,获得10
6分钟前
oleskarabach发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450132
求助须知:如何正确求助?哪些是违规求助? 4558026
关于积分的说明 14265309
捐赠科研通 4481397
什么是DOI,文献DOI怎么找? 2454792
邀请新用户注册赠送积分活动 1445571
关于科研通互助平台的介绍 1421511