Efficient PCA denoising of spatially correlated redundant MRI data

降噪 噪音(视频) 主成分分析 模式识别(心理学) 人工智能 计算机科学 阈值 数学 差异(会计) 统计 图像(数学) 会计 业务
作者
Rafael Neto Henriques,Andrada Ianuş,Lisa Novello,Jorge Jovicich,Sune Nørhøj Jespersen,Noam Shemesh
标识
DOI:10.1162/imag_a_00049
摘要

Abstract Marčenko-Pastur PCA (MPPCA) denoising is emerging as an effective means for noise suppression in MR imaging (MRI) acquisitions with redundant dimensions. However, MPPCA performance can be severely compromised by spatially correlated noise—an issue typically affecting most modern MRI acquisitions—almost to the point of returning the original images with little or no noise removal. In this study, we explore different threshold criteria for principal component analysis (PCA) component classification that enable efficient and robust denoising of MRI data even when noise exhibits high spatial correlations, especially in cases where data are acquired with Partial Fourier and when only magnitude data are available. We show that efficient denoising can be achieved by incorporating a-priori information about the noise variance into PCA denoising thresholding. Based on this, two denoising strategies developed here are: 1) General PCA (GPCA) denoising that uses a-priori noise variance estimates without assuming specific noise distributions; and 2) Threshold PCA (TPCA) denoising which removes noise components with a threshold computed from a-priori estimated noise variance to determine the upper bound of the Marčenko-Pastur (MP) distribution. These strategies were tested in simulations with known ground truth and applied for denoising diffusion MRI data acquired using pre-clinical (16.4T) and clinical (3T) MRI scanners. In synthetic phantoms, MPPCA denoising failed to denoise spatially correlated data, while GPCA and TPCA better classified components as dominated by signal/noise. In cases where the noise variance was not accurately estimated (as can be the case in many practical scenarios), TPCA still provides excellent denoising performance. Our experiments in pre-clinical diffusion data with highly corrupted by spatial correlated noise revealed that both GPCA and TPCA robustly denoised the data while MPPCA denoising failed. In in vivo diffusion MRI data acquired on a clinical scanner in healthy subjects, MPPCA weakly removed noised, while TPCA was found to have the best performance, likely due to misestimations of the noise variance. Thus, our work shows that these novel denoising approaches can strongly benefit future pre-clinical and clinical MRI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
经管研究生完成签到 ,获得积分10
1秒前
无籽莓完成签到,获得积分10
2秒前
TT12138完成签到,获得积分10
2秒前
sss完成签到 ,获得积分10
2秒前
平常的伊完成签到 ,获得积分10
2秒前
hhx完成签到,获得积分10
4秒前
Bellamie发布了新的文献求助10
4秒前
4秒前
现代的马里奥完成签到 ,获得积分10
4秒前
阿玖完成签到 ,获得积分10
5秒前
Jae完成签到 ,获得积分10
5秒前
unflycn完成签到,获得积分10
6秒前
Ava应助..采纳,获得10
6秒前
6秒前
huhu完成签到,获得积分20
7秒前
8秒前
MissXia完成签到,获得积分10
8秒前
8秒前
unflycn发布了新的文献求助20
9秒前
哈哈完成签到 ,获得积分10
9秒前
何许人也完成签到,获得积分20
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
bkagyin应助幸福的凡灵采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158860
求助须知:如何正确求助?哪些是违规求助? 2810040
关于积分的说明 7885599
捐赠科研通 2468890
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012