Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack

堆栈(抽象数据类型) 质子交换膜燃料电池 燃料电池 无监督学习 断层(地质) 计算机科学 人工智能 工程类 化学工程 地质学 地震学 程序设计语言
作者
Zhongyong Liu,Yuning Sun,Xiawei Tang,Lei Mao
出处
期刊:Applied Energy [Elsevier BV]
卷期号:360: 122814-122814 被引量:1
标识
DOI:10.1016/j.apenergy.2024.122814
摘要

Fault diagnosis has been considered as the most promising technique to strengthen reliability and durability of proton exchange membrane fuel cell (PEMFC) stack. However, the contradictory between sufficient labeled stack data requirement from existing methods and unlabeled stack data from real-world applications brings great challenges to unsupervised PEMFC stack fault diagnosis. For breaking through the bottleneck, this paper proposes an innovative deep transfer learning-based unsupervised PEMFC stack fault diagnosis method through knowledge transfer from single-cell to stack (DTL-PEM). Specifically, on the one hand, the proposed DTL-PEM method combines adversarial learning and conditional distribution adaptation to reduce both marginal and conditional distribution bias between single-cell and stack data, which greatly encourages capturing rich domain-invariant features to promote knowledge transferability from single-cell to stack. On the other hand, a weighting module is introduced in DTL-PEM network to eliminate the negative effect stemming from asymmetric label space. The effectiveness of the proposed DTL-PEM network is verified using labeled single-cell and unlabeled stack voltage data at various PEMFC states. Compared with the existing state-of-the-art methods, the proposed DTL-PEM network can not only achieve accurate unsupervised PEMFC stack fault diagnosis by knowledge transfer from single-cell to stack, but also have superior adaptability to different data openness, which make it promising in real-world PEMFC stack fault diagnosis. To the best of our knowledge, this is the first successful attempt to solve the unsupervised PEMFC stack fault diagnosis problem based on knowledge transfer from single-cell to stack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
王强发布了新的文献求助10
1秒前
晨心发布了新的文献求助10
1秒前
孙燕应助机智毛豆采纳,获得10
1秒前
2秒前
英俊的铭应助猪猪hero采纳,获得10
3秒前
johnny发布了新的文献求助10
3秒前
michi完成签到,获得积分10
3秒前
Lucas应助科研小麻瓜采纳,获得10
3秒前
阿奇应助西瓜汁采纳,获得10
3秒前
wan发布了新的文献求助30
3秒前
打打应助zhouzhou采纳,获得10
4秒前
5秒前
跳跃的太君完成签到,获得积分10
5秒前
凌青烟发布了新的文献求助10
6秒前
MESSY发布了新的文献求助10
6秒前
loco发布了新的文献求助30
6秒前
爆米花应助犹豫花卷采纳,获得10
6秒前
爱吃键盘的番茄侠完成签到,获得积分20
7秒前
SciGPT应助102755采纳,获得10
7秒前
研友_VZG7GZ应助Sir.夏季风采纳,获得10
7秒前
小太阳完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助20
9秒前
852应助内向怀曼采纳,获得10
9秒前
丘比特应助快乐小子采纳,获得10
10秒前
Linda完成签到,获得积分10
10秒前
文献文献文献完成签到,获得积分10
11秒前
11秒前
nanye完成签到,获得积分20
11秒前
权又菡完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
15秒前
XY完成签到,获得积分10
15秒前
牛牛牛应助Friday采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《模拟电子技术基础:系统方法》 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011633
求助须知:如何正确求助?哪些是违规求助? 3551418
关于积分的说明 11308628
捐赠科研通 3285620
什么是DOI,文献DOI怎么找? 1811122
邀请新用户注册赠送积分活动 886781
科研通“疑难数据库(出版商)”最低求助积分说明 811653