Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack

堆栈(抽象数据类型) 质子交换膜燃料电池 燃料电池 无监督学习 断层(地质) 计算机科学 人工智能 工程类 化学工程 地质学 地震学 程序设计语言
作者
Zhongyong Liu,Yuning Sun,Xiawei Tang,Lei Mao
出处
期刊:Applied Energy [Elsevier]
卷期号:360: 122814-122814 被引量:1
标识
DOI:10.1016/j.apenergy.2024.122814
摘要

Fault diagnosis has been considered as the most promising technique to strengthen reliability and durability of proton exchange membrane fuel cell (PEMFC) stack. However, the contradictory between sufficient labeled stack data requirement from existing methods and unlabeled stack data from real-world applications brings great challenges to unsupervised PEMFC stack fault diagnosis. For breaking through the bottleneck, this paper proposes an innovative deep transfer learning-based unsupervised PEMFC stack fault diagnosis method through knowledge transfer from single-cell to stack (DTL-PEM). Specifically, on the one hand, the proposed DTL-PEM method combines adversarial learning and conditional distribution adaptation to reduce both marginal and conditional distribution bias between single-cell and stack data, which greatly encourages capturing rich domain-invariant features to promote knowledge transferability from single-cell to stack. On the other hand, a weighting module is introduced in DTL-PEM network to eliminate the negative effect stemming from asymmetric label space. The effectiveness of the proposed DTL-PEM network is verified using labeled single-cell and unlabeled stack voltage data at various PEMFC states. Compared with the existing state-of-the-art methods, the proposed DTL-PEM network can not only achieve accurate unsupervised PEMFC stack fault diagnosis by knowledge transfer from single-cell to stack, but also have superior adaptability to different data openness, which make it promising in real-world PEMFC stack fault diagnosis. To the best of our knowledge, this is the first successful attempt to solve the unsupervised PEMFC stack fault diagnosis problem based on knowledge transfer from single-cell to stack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘阁我爱吃完成签到,获得积分10
1秒前
1秒前
今后应助眯眯眼的雪莲采纳,获得10
1秒前
耍酷山雁完成签到,获得积分10
1秒前
超级绫完成签到,获得积分10
1秒前
情怀应助sxd采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
Owen应助莫离采纳,获得10
3秒前
wxy发布了新的文献求助10
4秒前
神勇的天菱完成签到,获得积分10
4秒前
上进完成签到,获得积分10
4秒前
光亮从波完成签到 ,获得积分10
5秒前
肉片牛帅帅完成签到,获得积分10
5秒前
yikedouya发布了新的文献求助10
5秒前
华仔应助超级绫采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
科研狗发布了新的文献求助10
7秒前
7秒前
WNL发布了新的文献求助10
9秒前
称心采枫完成签到 ,获得积分10
9秒前
wanci应助gcy采纳,获得10
9秒前
betyby发布了新的文献求助10
9秒前
脑洞疼应助libra采纳,获得10
9秒前
鱼圆杂铺完成签到,获得积分10
9秒前
10秒前
耀学菜菜完成签到,获得积分10
10秒前
温婉的凝雁完成签到,获得积分20
10秒前
sunianjinshi完成签到,获得积分10
11秒前
刻苦鞅发布了新的文献求助10
13秒前
林林发布了新的文献求助10
13秒前
田园完成签到,获得积分10
14秒前
朴实问筠完成签到 ,获得积分10
14秒前
15秒前
南漂完成签到,获得积分10
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327147
求助须知:如何正确求助?哪些是违规求助? 2957498
关于积分的说明 8585810
捐赠科研通 2635547
什么是DOI,文献DOI怎么找? 1442472
科研通“疑难数据库(出版商)”最低求助积分说明 668298
邀请新用户注册赠送积分活动 655221