生物
转录组
表观遗传学
计算生物学
核糖核酸
遗传学
基因
基因表达
作者
Hexin Li,Chang Li,Yuxiang Zhang,Weixing Jiang,Fubo Zhang,Xiaokun Tang,Gaoyuan Sun,Siyuan Xu,Xin Dong,Jianzhong Shou,Jing Wang,Meng Chen
摘要
Abstract N 6 ‐methyladenosine (m 6 A) is the most prevalent epigenetic modification on eukaryotic messenger RNAs. Recent studies have focused on elucidating the key role of m 6 A modification patterns in tumor progression. However, the relationship between m 6 A and transcriptional regulation remains elusive. Nanopore technology enables the quantification of m 6 A levels at each genomic site. In this study, a pair of tumor tissues and adjacent normal tissues from clear cell renal cell carcinoma (ccRCC) surgical samples were collected for Nanopore direct RNA sequencing. We identified 9644 genes displaying anomalous m 6 A modifications, with 5343 genes upregulated and 4301 genes downregulated. Among these, 5224 genes were regarded as dysregulated genes, encompassing abnormal regulation of both m 6 A modification and RNA expression. Gene Set Enrichment Analysis revealed an enrichment of these genes in pathways related to renal system progress and fatty acid metabolic progress. Furthermore, the χ 2 test demonstrated a significant association between the levels of m 6 A in dysregulated genes and their transcriptional expression levels. Additionally, we identified four obesity‐associated genes (FTO, LEPR, ADIPOR2, and NPY5R) among the dysregulated genes. Further analyses using public databases revealed that these four genes were all related to the prognosis and diagnosis of ccRCC. This study introduced the novel approach of employing conjoint analysis of m 6 A modification and RNA expression based on Nanopore sequencing to explore potential disease‐related genes. Our work demonstrates the feasibility of the application of Nanopore sequencing technology in RNA epigenetic regulation research and identifies new potential therapeutic targets for ccRCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI