Mitigating healthcare supply chain challenges under disaster conditions: a holistic AI-based analysis of social media data

社会化媒体 供应链 医疗保健 业务 灾害应对 供应链管理 应急管理 计算机科学 过程管理 知识管理 风险分析(工程) 营销 经济 万维网 经济增长
作者
Vishwa V. Kumar,Avimanyu Sahoo,Siva K. Balasubramanian,Sampson Gholston
出处
期刊:International Journal of Production Research [Informa]
卷期号:: 1-19 被引量:1
标识
DOI:10.1080/00207543.2024.2316884
摘要

A key advantage of social media is the real-time exchange of views with large communities. In disaster situations, such bidirectional information exchange is most useful to victims and support teams, especially in communications with authorities, volunteers, and the public. This paper addresses challenges faced by the healthcare supply chain during the COVID-19 pandemic with analyses of Twitter data using an Artificial Intelligence-driven multi-step approach. We investigate tweets for information about healthcare supply chains, such as the scarcity of testing kits, oxygen cylinders, and hospital beds during the pandemic. We deployed machine learning to classify such tweets into imperative and non-imperative categories based on need severity. The study sought to predict the location of victims requesting help based on their imperative tweets if geo-tag information was missing. The proposed approach used four steps: (1) keyword-based informative tweet search, (2) raw tweet pre-processing, (3) content analysis to identify tweet trends, public sentiment, topics related to healthcare supply chain challenges, and crisis classification to label imperative and non-imperative tweets, (4) locating the point-of-crisis from imperative tweets to facilitate coordination of help operations. The pre-processing of tweets, trend analysis, and sentiment analysis relied on natural language processing and machine learning for topic modelling (K-mean clustering), crisis classification (random forest), and point-of-crisis detection (Markov chain). Results demonstrate the potential to capture significant, timely, and actionable information on healthcare supply chain challenges to respond quickly and appropriately in a pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Mzhao应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得50
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
xuuuuu发布了新的文献求助10
3秒前
张琼敏发布了新的文献求助10
3秒前
4秒前
Caicaicai发布了新的文献求助10
4秒前
123完成签到 ,获得积分10
4秒前
123发布了新的文献求助10
4秒前
充电宝应助小景007采纳,获得10
4秒前
5秒前
6秒前
华仔应助dongkk采纳,获得10
7秒前
7秒前
岳岳发布了新的文献求助10
8秒前
小饼干发布了新的文献求助10
8秒前
浴火重生发布了新的文献求助10
8秒前
余未晚关注了科研通微信公众号
10秒前
burybells发布了新的文献求助10
10秒前
CodeCraft应助zty采纳,获得10
10秒前
11秒前
123完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154081
求助须知:如何正确求助?哪些是违规求助? 2804993
关于积分的说明 7862902
捐赠科研通 2463094
什么是DOI,文献DOI怎么找? 1311144
科研通“疑难数据库(出版商)”最低求助积分说明 629460
版权声明 601821