EAIS-Former: An efficient and accurate image segmentation method for fruit leaf diseases

模式识别(心理学) 斑点 人工智能 分割 图像分割 像素 编码器 计算机科学 计算机视觉 植物 生物 操作系统
作者
Jiangwen Lu,Bibo Lu,Wanli Ma,Yang Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108739-108739 被引量:2
标识
DOI:10.1016/j.compag.2024.108739
摘要

Fruit leaf disease segmentation is an essential foundation for achieving accurate disease diagnosis and identification. However, shadows caused by folded leaves and serrations on leaves can lead to difficulty in extracting edge features, affecting the accuracy of leaf segmentation. In addition, the varying shapes and blurred boundaries of disease spots can further lead to poor segmentation performance of spots. To address the above problems, this work proposes a method called EAIS-Former by combining the advantages of global modeling of Transformer, local processing and positional coding of convolutional neural network (CNN) for accurate segmentation in fruit leaf disease images. Dual scale overlap (DSO) patch embedding is designed to effectively extract multi-scale disease features by dual paths to alleviate omission of lesions. Ultra large convolution (ULC) Transformer block is customized for performing positional encoding and global modeling to efficiently extract global and positional features of leaves and diseases. Skip convolutional local optimization (SCLO) module is proposed to optimize the local detail and edge information and improve the pixel classification ability of the model so that the segmentation results of leaves and spots can be finer and more tiny spots can be extracted. Double layer upsampling (DLU) decoder is built to efficiently fuse the detail information with the semantic information and output the accurate segmentation results of leaves and spots. The experimental results show that the proposed method reach 99.04%, 98.64%, 99.24%, 99.42%, 98.59% and 98.58% intersection over union (IoU) for leaf segmentation on apple rust, pomegranate cercospora spot, mango anthracnose, jamun fungal disease, apple alternaria blotch and apple gray spot datasets, respectively. The IoU of lesion segmentation achieve 94.47%, 94.54%, 83.83%, 86.60%, 89.59% and 88.76%, respectively. In contrast to DeepLabv3+, the accuracy of disease segmentation is raised by 5.25%, 5.15%, 5.55%, 7.64%, 7.04% and 9.35%, respectively. Compared with U-Net, the proposed method improves the accuracy of disease spot segmentation by 4.3%, 4.44%, 5.26%, 9.42%, 5.87% and 6.53% under the six fruit leaf test sets, respectively. In addition, total parameters and FLOPs of the proposed method are only 18.44% and 8.47% of U-Net, respectively. Therefore, this study can provide an efficient and accurate method for the task of fruit leaf disease spot segmentation, which provides a sufficient basis for the accurate analysis of fruit leaves and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助super chan采纳,获得10
刚刚
2秒前
乐乐应助夜雨听笑采纳,获得10
2秒前
星辰大海应助Dazzein采纳,获得10
6秒前
6秒前
彭于晏应助沉默的含巧采纳,获得10
6秒前
凶狠的食铁兽完成签到,获得积分10
6秒前
6秒前
7秒前
10秒前
11秒前
13秒前
夜雨听笑发布了新的文献求助10
14秒前
Dazzein发布了新的文献求助10
15秒前
手机应助缥缈不惜采纳,获得10
15秒前
xiao牛完成签到,获得积分10
15秒前
17秒前
19秒前
22秒前
22秒前
zyzhnu完成签到,获得积分10
23秒前
烛夜黎发布了新的文献求助10
26秒前
27秒前
科研通AI2S应助ZONG采纳,获得10
27秒前
axhee完成签到,获得积分10
27秒前
眼睛大世开完成签到 ,获得积分10
28秒前
shlll发布了新的文献求助10
28秒前
石龙子完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
小海发布了新的文献求助10
32秒前
lehha完成签到,获得积分10
34秒前
hbuhfl完成签到,获得积分10
37秒前
xmfffff完成签到,获得积分10
38秒前
SciGPT应助尹基忠采纳,获得10
38秒前
小海完成签到,获得积分10
39秒前
43秒前
打打应助zpy采纳,获得10
45秒前
46秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329457
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594359
捐赠科研通 2637590
什么是DOI,文献DOI怎么找? 1443651
科研通“疑难数据库(出版商)”最低求助积分说明 668775
邀请新用户注册赠送积分活动 656220