EAIS-Former: An efficient and accurate image segmentation method for fruit leaf diseases

模式识别(心理学) 斑点 人工智能 分割 图像分割 像素 编码器 计算机科学 计算机视觉 植物 生物 操作系统
作者
Jiangwen Lu,Bibo Lu,Wanli Ma,Yang Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108739-108739 被引量:7
标识
DOI:10.1016/j.compag.2024.108739
摘要

Fruit leaf disease segmentation is an essential foundation for achieving accurate disease diagnosis and identification. However, shadows caused by folded leaves and serrations on leaves can lead to difficulty in extracting edge features, affecting the accuracy of leaf segmentation. In addition, the varying shapes and blurred boundaries of disease spots can further lead to poor segmentation performance of spots. To address the above problems, this work proposes a method called EAIS-Former by combining the advantages of global modeling of Transformer, local processing and positional coding of convolutional neural network (CNN) for accurate segmentation in fruit leaf disease images. Dual scale overlap (DSO) patch embedding is designed to effectively extract multi-scale disease features by dual paths to alleviate omission of lesions. Ultra large convolution (ULC) Transformer block is customized for performing positional encoding and global modeling to efficiently extract global and positional features of leaves and diseases. Skip convolutional local optimization (SCLO) module is proposed to optimize the local detail and edge information and improve the pixel classification ability of the model so that the segmentation results of leaves and spots can be finer and more tiny spots can be extracted. Double layer upsampling (DLU) decoder is built to efficiently fuse the detail information with the semantic information and output the accurate segmentation results of leaves and spots. The experimental results show that the proposed method reach 99.04%, 98.64%, 99.24%, 99.42%, 98.59% and 98.58% intersection over union (IoU) for leaf segmentation on apple rust, pomegranate cercospora spot, mango anthracnose, jamun fungal disease, apple alternaria blotch and apple gray spot datasets, respectively. The IoU of lesion segmentation achieve 94.47%, 94.54%, 83.83%, 86.60%, 89.59% and 88.76%, respectively. In contrast to DeepLabv3+, the accuracy of disease segmentation is raised by 5.25%, 5.15%, 5.55%, 7.64%, 7.04% and 9.35%, respectively. Compared with U-Net, the proposed method improves the accuracy of disease spot segmentation by 4.3%, 4.44%, 5.26%, 9.42%, 5.87% and 6.53% under the six fruit leaf test sets, respectively. In addition, total parameters and FLOPs of the proposed method are only 18.44% and 8.47% of U-Net, respectively. Therefore, this study can provide an efficient and accurate method for the task of fruit leaf disease spot segmentation, which provides a sufficient basis for the accurate analysis of fruit leaves and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chuan发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
LILI完成签到 ,获得积分10
1秒前
小美爱科研完成签到,获得积分10
1秒前
大个应助派大星采纳,获得10
2秒前
2秒前
eiland发布了新的文献求助10
2秒前
NexusExplorer应助花花采纳,获得10
2秒前
2秒前
高大草莓发布了新的文献求助10
3秒前
可靠蜻蜓完成签到,获得积分10
3秒前
WWW完成签到,获得积分10
3秒前
hmhu完成签到,获得积分10
4秒前
4秒前
sandse7en完成签到 ,获得积分10
4秒前
zz完成签到 ,获得积分10
4秒前
4秒前
sunshine完成签到,获得积分10
5秒前
bio-tang发布了新的文献求助10
5秒前
LLL完成签到 ,获得积分10
5秒前
张晓斌完成签到,获得积分20
6秒前
逍遥游发布了新的文献求助10
6秒前
6秒前
yzx完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
饱满的纹完成签到,获得积分10
7秒前
orixero应助我想@科研采纳,获得10
7秒前
hmhu发布了新的文献求助10
7秒前
林圆涛完成签到,获得积分10
8秒前
阳光完成签到,获得积分10
8秒前
田様应助ysw采纳,获得10
8秒前
8秒前
雪碧和果冻完成签到,获得积分10
9秒前
Lester完成签到 ,获得积分10
10秒前
zenmefeishi发布了新的文献求助10
10秒前
张小清发布了新的文献求助10
10秒前
ZLX发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439237
求助须知:如何正确求助?哪些是违规求助? 4550227
关于积分的说明 14223399
捐赠科研通 4471161
什么是DOI,文献DOI怎么找? 2450269
邀请新用户注册赠送积分活动 1441159
关于科研通互助平台的介绍 1417797