已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EAIS-Former: An efficient and accurate image segmentation method for fruit leaf diseases

模式识别(心理学) 斑点 人工智能 分割 图像分割 像素 编码器 计算机科学 计算机视觉 植物 生物 操作系统
作者
Jiangwen Lu,Bibo Lu,Wanli Ma,Yang Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108739-108739 被引量:7
标识
DOI:10.1016/j.compag.2024.108739
摘要

Fruit leaf disease segmentation is an essential foundation for achieving accurate disease diagnosis and identification. However, shadows caused by folded leaves and serrations on leaves can lead to difficulty in extracting edge features, affecting the accuracy of leaf segmentation. In addition, the varying shapes and blurred boundaries of disease spots can further lead to poor segmentation performance of spots. To address the above problems, this work proposes a method called EAIS-Former by combining the advantages of global modeling of Transformer, local processing and positional coding of convolutional neural network (CNN) for accurate segmentation in fruit leaf disease images. Dual scale overlap (DSO) patch embedding is designed to effectively extract multi-scale disease features by dual paths to alleviate omission of lesions. Ultra large convolution (ULC) Transformer block is customized for performing positional encoding and global modeling to efficiently extract global and positional features of leaves and diseases. Skip convolutional local optimization (SCLO) module is proposed to optimize the local detail and edge information and improve the pixel classification ability of the model so that the segmentation results of leaves and spots can be finer and more tiny spots can be extracted. Double layer upsampling (DLU) decoder is built to efficiently fuse the detail information with the semantic information and output the accurate segmentation results of leaves and spots. The experimental results show that the proposed method reach 99.04%, 98.64%, 99.24%, 99.42%, 98.59% and 98.58% intersection over union (IoU) for leaf segmentation on apple rust, pomegranate cercospora spot, mango anthracnose, jamun fungal disease, apple alternaria blotch and apple gray spot datasets, respectively. The IoU of lesion segmentation achieve 94.47%, 94.54%, 83.83%, 86.60%, 89.59% and 88.76%, respectively. In contrast to DeepLabv3+, the accuracy of disease segmentation is raised by 5.25%, 5.15%, 5.55%, 7.64%, 7.04% and 9.35%, respectively. Compared with U-Net, the proposed method improves the accuracy of disease spot segmentation by 4.3%, 4.44%, 5.26%, 9.42%, 5.87% and 6.53% under the six fruit leaf test sets, respectively. In addition, total parameters and FLOPs of the proposed method are only 18.44% and 8.47% of U-Net, respectively. Therefore, this study can provide an efficient and accurate method for the task of fruit leaf disease spot segmentation, which provides a sufficient basis for the accurate analysis of fruit leaves and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远山黛发布了新的文献求助10
刚刚
Wei完成签到 ,获得积分10
13秒前
14秒前
Orange应助babren采纳,获得10
16秒前
乾坤侠客LW完成签到,获得积分10
19秒前
scm应助小狗采纳,获得30
25秒前
花花521完成签到,获得积分10
31秒前
mathmotive完成签到,获得积分10
33秒前
yangzai完成签到 ,获得积分10
33秒前
雪白小蜜蜂完成签到,获得积分10
37秒前
褚友菱完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
52秒前
禾火完成签到,获得积分10
52秒前
53秒前
57秒前
啦啦啦发布了新的文献求助10
57秒前
zhubin完成签到 ,获得积分10
57秒前
尚奇发布了新的文献求助10
1分钟前
1分钟前
尚奇完成签到,获得积分10
1分钟前
Zidawhy发布了新的文献求助30
1分钟前
1分钟前
尊敬雪萍发布了新的文献求助10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
尊敬雪萍完成签到,获得积分10
1分钟前
phoenix完成签到,获得积分0
1分钟前
折光完成签到,获得积分10
1分钟前
英勇兔子完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助与山采纳,获得10
1分钟前
郗妫完成签到,获得积分10
1分钟前
Gemi发布了新的文献求助10
1分钟前
moiumuio完成签到,获得积分10
1分钟前
1分钟前
汉堡包应助sleet采纳,获得10
1分钟前
CHSLN完成签到 ,获得积分10
1分钟前
无心发布了新的文献求助10
1分钟前
pp777完成签到 ,获得积分10
1分钟前
海伯利安应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959981
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803056