作者
Manisha Agarwal,Katherine Roth,Zhao Yang,Rahul Sharma,Krishna Rao Maddipati,Judy A. Westrick,Michael C. Petriello
摘要
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.