亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDensNet201-IDRSRNet: Efficient cardiovascular disease prediction system using hybrid deep learning

计算机科学 人工智能 疾病 深度学习 机器学习 医学 内科学
作者
Manjula Mandava,Surendra Reddy Vinta
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106147-106147 被引量:1
标识
DOI:10.1016/j.bspc.2024.106147
摘要

Cardiovascular diseases (CVDs) are common diseases that impact the heart or vascular system. Since early discovery significantly improves survival chances, precise prediction techniques are essential. There are new paths for more accurate CVD prediction due to emerging technologies like machine learning (ML). Heart disease may now be identified in its early stages using several machine learning algorithms, which can aid in future treatments. However, none of the existing algorithms achieve high accuracy and frequently fail because of bias and over-fitting. To improve the prediction accuracy of cardiovascular disease, a new innovative approach is proposed in this research by utilizing deep learning techniques to identify significant features. For efficient CVD prediction, we propose a hybrid deep-learning intelligent system. Tests and assessments have been conducted using the five benchmark datasets for cardiac disease from the UCI repository. Three data processing techniques are first utilized in the pre-processing stage to improve the dataset's quality by preventing undesired distortions: outlier removal, replacing missing values, and resolving data imbalance problems. Next, deep learning-based Modified DenseNet201 (MDenseNet201) extracts the disease-related features. Relief and Least Absolute Shrinkage and Selection Operator (LASSO) approaches are used to select the appropriate features. Finally, a deep learning-based improved deep residual shrinkage network (IDRSNet) is employed to predict cardiovascular disease. The accuracy of the proposed model on the University of California Irvine (UCI) machine learning repository dataset is 99.12%. Based on experimental results, the proposed hybrid deep learning system produced more excellent accuracy for CVD prediction than existing approaches. The combined intelligent system (MDensNet201-IDRSNet), which generates the best practical solution out of all input prediction models considering performance criteria, makes it possible for physicians and radiologists to diagnose cardiac patients more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助SEM小菜鸡采纳,获得10
17秒前
前寒武完成签到,获得积分10
38秒前
1分钟前
2分钟前
2分钟前
SEM小菜鸡发布了新的文献求助10
2分钟前
2分钟前
田様应助Ainsely采纳,获得10
3分钟前
复杂的保温杯完成签到 ,获得积分10
3分钟前
枫威完成签到 ,获得积分10
3分钟前
HarryYang完成签到 ,获得积分10
4分钟前
SEM小菜鸡发布了新的文献求助10
4分钟前
4分钟前
从容芮完成签到,获得积分0
5分钟前
7分钟前
JamesPei应助yayee采纳,获得10
7分钟前
酷波er应助xx采纳,获得10
7分钟前
JaneChen完成签到 ,获得积分10
8分钟前
8分钟前
yayee完成签到,获得积分10
8分钟前
yayee发布了新的文献求助10
8分钟前
VDC应助科研通管家采纳,获得20
8分钟前
SciGPT应助mmyhn采纳,获得10
9分钟前
cuiclean123发布了新的文献求助10
9分钟前
大模型应助mmyhn采纳,获得10
9分钟前
健壮的花瓣完成签到 ,获得积分10
9分钟前
啥时候吃火锅完成签到 ,获得积分0
9分钟前
希望天下0贩的0应助mmyhn采纳,获得10
10分钟前
VDC应助Kapur采纳,获得30
10分钟前
研友_8Y26PL完成签到 ,获得积分10
10分钟前
激动的似狮完成签到,获得积分10
10分钟前
rebeycca完成签到,获得积分10
10分钟前
VDC应助科研通管家采纳,获得30
10分钟前
10分钟前
11分钟前
11分钟前
jyy应助yzf采纳,获得10
11分钟前
12分钟前
乐观海云完成签到 ,获得积分10
12分钟前
dpul发布了新的文献求助10
12分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371238
求助须知:如何正确求助?哪些是违规求助? 2989477
关于积分的说明 8735785
捐赠科研通 2672634
什么是DOI,文献DOI怎么找? 1464163
科研通“疑难数据库(出版商)”最低求助积分说明 677409
邀请新用户注册赠送积分活动 668693