Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells

压电1 材料科学 诱导多能干细胞 细胞生物学 干细胞 剪应力 蛋白激酶B PI3K/AKT/mTOR通路 内皮干细胞 化学 信号转导 内科学 医学 复合材料 生物 胚胎干细胞 体外 离子通道 基因 生物化学 受体 机械敏感通道
作者
Minghui Xie,Hong Cao,Weihua Qiao,Ge Yan,Xingyu Qian,Yecen Zhang,Xu Li,Shuyu Wen,Jiawei Shi,Min Cheng,Nianguo Dong
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:178: 181-195 被引量:9
标识
DOI:10.1016/j.actbio.2024.02.043
摘要

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨老师发布了新的文献求助30
1秒前
醒了没醒醒完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
AZ发布了新的文献求助10
2秒前
学谦完成签到,获得积分10
3秒前
伯赏元彤完成签到 ,获得积分10
3秒前
做实验的猹完成签到,获得积分10
4秒前
科研通AI6应助123rgk采纳,获得10
5秒前
冰阔罗完成签到,获得积分10
5秒前
852应助畅快的煜祺采纳,获得10
5秒前
醉翁发布了新的文献求助10
5秒前
5秒前
Criminology34应助醉在肩上采纳,获得10
6秒前
直率的钢铁侠完成签到,获得积分10
6秒前
善学以致用应助12334采纳,获得10
6秒前
道心完成签到,获得积分10
6秒前
xiaojiu完成签到,获得积分10
7秒前
劣根完成签到,获得积分10
7秒前
科研小秦发布了新的文献求助10
7秒前
欢呼芒果完成签到,获得积分10
7秒前
8秒前
Jun完成签到 ,获得积分10
8秒前
8秒前
wyq完成签到,获得积分10
11秒前
千流完成签到,获得积分10
11秒前
terrell完成签到,获得积分10
11秒前
12秒前
dique3hao完成签到 ,获得积分10
12秒前
蓝韵完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
宋艳芳完成签到,获得积分10
13秒前
醉翁完成签到,获得积分10
13秒前
Ericlibrave完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130