Graph Convolutional Neural Network with Multi-Layer Attention Mechanism for Predicting Potential Microbe-Disease Associations

计算机科学 卷积神经网络 机制(生物学) 图形 人工智能 嵌入 机器学习 数据挖掘 理论计算机科学 认识论 哲学
作者
Lei Wang,Xiaoyu Yang,Linai Kuang,Zhen Zhang,Bin Zeng,Zhiping Chen
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (6): 497-508 被引量:4
标识
DOI:10.2174/1574893618666230316113621
摘要

Background: Human microbial communities play an important role in some physiological process of human beings. Nevertheless, the identification of microbe-disease associations through biological experiments is costly and time-consuming. Hence, the development of calculation models is meaningful to infer latent associations between microbes and diseases. Aims: In this manuscript, we aim to design a computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to infer latent microbe-disease associations. Objective: This study aims to propose a novel computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to detect potential microbedisease associations. Methods: In GCNMA, the known microbe-disease association network was first integrated with the microbe- microbe similarity network and the disease-disease similarity network into a heterogeneous network first. Subsequently, the graph convolutional neural network was implemented to extract embedding features of each layer for microbes and diseases respectively. Thereafter, these embedding features of each layer were fused together by adopting the multi-layer attention mechanism derived from the graph convolutional neural network, based on which, a bilinear decoder would be further utilized to infer possible associations between microbes and diseases. Results: Finally, to evaluate the predictive ability of GCNMA, intensive experiments were done and compared results with eight state-of-the-art methods which demonstrated that under the frameworks of both 2-fold cross-validations and 5-fold cross-validations, GCNMA can achieve satisfactory prediction performance based on different databases including HMDAD and Disbiome simultaneously. Moreover, case studies on three kinds of common diseases such as asthma, type 2 diabetes, and inflammatory bowel disease verified the effectiveness of GCNMA as well. Conclusion: GCNMA outperformed 8 state-of-the-art competitive methods based on the benchmarks of both HMDAD and Disbiome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ai化学完成签到,获得积分10
1秒前
sherrycofe应助可可采纳,获得10
2秒前
枯木发布了新的文献求助10
2秒前
科研通AI2S应助DrZ采纳,获得10
2秒前
3秒前
村长热爱美丽完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
跳跃尔琴发布了新的文献求助10
7秒前
wt200001发布了新的文献求助10
8秒前
大模型应助乐观的新波采纳,获得10
8秒前
吕亦寒发布了新的文献求助10
8秒前
9秒前
miku1发布了新的文献求助10
10秒前
2ui完成签到,获得积分10
10秒前
11秒前
archer01发布了新的文献求助30
11秒前
12秒前
个性的汲发布了新的文献求助10
12秒前
13秒前
甜瓜不熟完成签到,获得积分10
14秒前
米兰完成签到 ,获得积分10
14秒前
hxxcyb完成签到,获得积分10
14秒前
15秒前
万能图书馆应助线条采纳,获得10
16秒前
科研通AI2S应助Lsen采纳,获得10
17秒前
18秒前
在水一方应助优雅涔雨采纳,获得10
18秒前
小趴菜完成签到,获得积分10
18秒前
帅子完成签到,获得积分10
19秒前
意难平云南分平完成签到 ,获得积分10
19秒前
甜瓜不熟发布了新的文献求助10
20秒前
田様应助Janson采纳,获得10
21秒前
Rich_WH完成签到,获得积分10
21秒前
吕亦寒完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825