Graph Convolutional Neural Network with Multi-Layer Attention Mechanism for Predicting Potential Microbe-Disease Associations

计算机科学 卷积神经网络 机制(生物学) 图形 人工智能 嵌入 机器学习 数据挖掘 理论计算机科学 哲学 认识论
作者
Lei Wang,Xiaoyu Yang,Linai Kuang,Zhen Zhang,Bin Zeng,Zhiping Chen
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (6): 497-508 被引量:5
标识
DOI:10.2174/1574893618666230316113621
摘要

Background: Human microbial communities play an important role in some physiological process of human beings. Nevertheless, the identification of microbe-disease associations through biological experiments is costly and time-consuming. Hence, the development of calculation models is meaningful to infer latent associations between microbes and diseases. Aims: In this manuscript, we aim to design a computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to infer latent microbe-disease associations. Objective: This study aims to propose a novel computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to detect potential microbedisease associations. Methods: In GCNMA, the known microbe-disease association network was first integrated with the microbe- microbe similarity network and the disease-disease similarity network into a heterogeneous network first. Subsequently, the graph convolutional neural network was implemented to extract embedding features of each layer for microbes and diseases respectively. Thereafter, these embedding features of each layer were fused together by adopting the multi-layer attention mechanism derived from the graph convolutional neural network, based on which, a bilinear decoder would be further utilized to infer possible associations between microbes and diseases. Results: Finally, to evaluate the predictive ability of GCNMA, intensive experiments were done and compared results with eight state-of-the-art methods which demonstrated that under the frameworks of both 2-fold cross-validations and 5-fold cross-validations, GCNMA can achieve satisfactory prediction performance based on different databases including HMDAD and Disbiome simultaneously. Moreover, case studies on three kinds of common diseases such as asthma, type 2 diabetes, and inflammatory bowel disease verified the effectiveness of GCNMA as well. Conclusion: GCNMA outperformed 8 state-of-the-art competitive methods based on the benchmarks of both HMDAD and Disbiome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我嘞个豆应助yy采纳,获得10
刚刚
阿吉发布了新的文献求助10
刚刚
laojian完成签到 ,获得积分20
刚刚
李伟刺猹发布了新的文献求助10
1秒前
1秒前
1秒前
风中的文龙完成签到,获得积分10
1秒前
狂奔的蜗牛完成签到,获得积分10
2秒前
顾矜应助hp571采纳,获得10
2秒前
2秒前
旅行的天空完成签到,获得积分10
2秒前
2秒前
2秒前
Lucas应助洛洛采纳,获得10
2秒前
芜湖发布了新的文献求助10
3秒前
3秒前
renpp822发布了新的文献求助10
4秒前
天天快乐应助phl采纳,获得10
4秒前
卷仔发布了新的文献求助10
4秒前
行云岛完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
小丫发布了新的文献求助10
6秒前
7秒前
哇哈哈发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
Demo完成签到,获得积分10
9秒前
9秒前
xxx发布了新的文献求助10
10秒前
乔恶霸完成签到 ,获得积分10
10秒前
zhangscience发布了新的文献求助10
11秒前
FIN应助忧郁柠檬采纳,获得10
11秒前
Marjorie发布了新的文献求助10
11秒前
11秒前
朱洛尘发布了新的文献求助10
12秒前
jbhb发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993