亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Convolutional Neural Network with Multi-Layer Attention Mechanism for Predicting Potential Microbe-Disease Associations

计算机科学 卷积神经网络 机制(生物学) 图形 人工智能 嵌入 机器学习 数据挖掘 理论计算机科学 认识论 哲学
作者
Lei Wang,Xiaoyu Yang,Linai Kuang,Zhen Zhang,Bin Zeng,Zhiping Chen
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (6): 497-508 被引量:8
标识
DOI:10.2174/1574893618666230316113621
摘要

Background: Human microbial communities play an important role in some physiological process of human beings. Nevertheless, the identification of microbe-disease associations through biological experiments is costly and time-consuming. Hence, the development of calculation models is meaningful to infer latent associations between microbes and diseases. Aims: In this manuscript, we aim to design a computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to infer latent microbe-disease associations. Objective: This study aims to propose a novel computational model based on the Graph Convolutional Neural Network with Multi-layer Attention mechanism, called GCNMA, to detect potential microbedisease associations. Methods: In GCNMA, the known microbe-disease association network was first integrated with the microbe- microbe similarity network and the disease-disease similarity network into a heterogeneous network first. Subsequently, the graph convolutional neural network was implemented to extract embedding features of each layer for microbes and diseases respectively. Thereafter, these embedding features of each layer were fused together by adopting the multi-layer attention mechanism derived from the graph convolutional neural network, based on which, a bilinear decoder would be further utilized to infer possible associations between microbes and diseases. Results: Finally, to evaluate the predictive ability of GCNMA, intensive experiments were done and compared results with eight state-of-the-art methods which demonstrated that under the frameworks of both 2-fold cross-validations and 5-fold cross-validations, GCNMA can achieve satisfactory prediction performance based on different databases including HMDAD and Disbiome simultaneously. Moreover, case studies on three kinds of common diseases such as asthma, type 2 diabetes, and inflammatory bowel disease verified the effectiveness of GCNMA as well. Conclusion: GCNMA outperformed 8 state-of-the-art competitive methods based on the benchmarks of both HMDAD and Disbiome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜忆霜完成签到 ,获得积分10
1秒前
luan完成签到 ,获得积分10
3秒前
研0种牛马发布了新的文献求助10
4秒前
zsmj23完成签到 ,获得积分0
5秒前
谢雨辰完成签到 ,获得积分10
10秒前
12秒前
高兴醉薇完成签到 ,获得积分10
12秒前
13秒前
13秒前
陈小子完成签到 ,获得积分10
15秒前
烂漫靖柏完成签到 ,获得积分10
15秒前
16秒前
ANKAR发布了新的文献求助10
20秒前
20秒前
还单身的晓夏关注了科研通微信公众号
21秒前
trophozoite完成签到 ,获得积分10
21秒前
活力的觅荷完成签到,获得积分20
22秒前
22秒前
23秒前
jyy应助ANKAR采纳,获得10
28秒前
上官若男应助活力的觅荷采纳,获得10
29秒前
okko发布了新的文献求助10
30秒前
峡星牙发布了新的文献求助10
30秒前
31秒前
Zz完成签到,获得积分10
31秒前
okko完成签到,获得积分10
37秒前
38秒前
38秒前
ANKAR完成签到,获得积分10
38秒前
Akaza完成签到 ,获得积分10
38秒前
峡星牙完成签到,获得积分10
40秒前
jml完成签到,获得积分10
41秒前
48秒前
追光者完成签到,获得积分10
50秒前
52秒前
54秒前
重要的夜玉完成签到 ,获得积分10
59秒前
ggg完成签到 ,获得积分10
1分钟前
Thanks完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714155
求助须知:如何正确求助?哪些是违规求助? 5221116
关于积分的说明 15272841
捐赠科研通 4865689
什么是DOI,文献DOI怎么找? 2612277
邀请新用户注册赠送积分活动 1562440
关于科研通互助平台的介绍 1519639