计算机科学
灵活性(工程)
分布式发电
核(代数)
计算
电压
分布式计算
数学优化
工程类
算法
数学
可再生能源
统计
电气工程
组合数学
作者
Tianqi Hong,Yichen Zhang,Jianzhe Liu,Dongbo Zhao,Jing Xiong
标识
DOI:10.1109/tpwrs.2023.3242868
摘要
This paper proposes a distributed data-driven optimization framework for voltage regulation in distribution systems. The recursive kernel regression and alternating direction method of multipliers (ADMM) are selected to cover the system learning and distributed optimization tasks. The proposed distributed data-driven framework is capable of having a rapid response to system or load changes while considering the operation optimality. Besides, the distributed algorithm parallels the computation tasks and reduces the computational expense of a single agent. To validate the performance of the proposed method, a hypothetical 7-Bus system and the IEEE 123-Bus system are selected to show the effectiveness of the proposed data-driven framework. According to the numerical study results, the proposed method offers great flexibility for selecting customized kernel models for different regions and can effectively improve the system voltage profile in a distributed manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI