AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders

药物重新定位 药品 药物靶点 疾病 药物发现 重新调整用途 计算机科学 批准的药物 机制(生物学) 人工智能 特征(语言学) 机器学习 医学 计算生物学 生物信息学 药理学 生物 认识论 哲学 病理 语言学 生态学
作者
Xingxin Pan,Jun Yun,Zeynep H. Coban Akdemir,Xiaoqian Jiang,Erxi Wu,Jason H. Huang,Nidhi Sahni,S. Stephen Yi
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 1533-1542 被引量:14
标识
DOI:10.1016/j.csbj.2023.02.004
摘要

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
NexusExplorer应助vera采纳,获得10
2秒前
青椒黑蒜完成签到,获得积分10
2秒前
香蕉觅云应助青葱鱼块采纳,获得10
2秒前
小王完成签到,获得积分10
3秒前
3秒前
song发布了新的文献求助30
4秒前
典雅代云发布了新的文献求助10
5秒前
九幺发布了新的文献求助10
5秒前
8秒前
科研通AI6应助Nancy采纳,获得10
8秒前
斯文败类应助辣辣采纳,获得10
10秒前
10秒前
orixero应助可耐的乐荷采纳,获得10
10秒前
善学以致用应助riverhj采纳,获得10
10秒前
10秒前
Jasper应助hgzb采纳,获得10
11秒前
qq完成签到,获得积分10
12秒前
12秒前
勤恳易真发布了新的文献求助10
12秒前
格瑞迪贝儿完成签到 ,获得积分10
13秒前
13秒前
健忘冷风发布了新的文献求助10
13秒前
13秒前
14秒前
吕士晋发布了新的文献求助10
15秒前
胖达发布了新的文献求助10
15秒前
刘育含完成签到 ,获得积分20
16秒前
小美完成签到,获得积分10
16秒前
李爱国应助古丹娜采纳,获得10
16秒前
song完成签到,获得积分20
16秒前
青葱鱼块发布了新的文献求助10
17秒前
大模型应助花痴的涵柏采纳,获得10
18秒前
19秒前
坚定芷烟完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354