AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders

药物重新定位 药品 药物靶点 疾病 药物发现 重新调整用途 计算机科学 批准的药物 机制(生物学) 人工智能 特征(语言学) 机器学习 医学 计算生物学 生物信息学 药理学 生物 认识论 哲学 病理 语言学 生态学
作者
Xingxin Pan,Jun Yun,Zeynep H. Coban Akdemir,Xiaoqian Jiang,Erxi Wu,Jason H. Huang,Nidhi Sahni,S. Stephen Yi
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:21: 1533-1542 被引量:14
标识
DOI:10.1016/j.csbj.2023.02.004
摘要

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴旭东完成签到,获得积分10
1秒前
桃子发布了新的文献求助10
3秒前
风中的向卉完成签到 ,获得积分10
5秒前
孤独听雨的猫完成签到 ,获得积分10
7秒前
笑一笑完成签到 ,获得积分20
11秒前
大模型应助Perrylin718采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
鸣笛应助科研通管家采纳,获得30
13秒前
coolkid应助科研通管家采纳,获得10
13秒前
鸣笛应助科研通管家采纳,获得30
13秒前
LJ程励完成签到 ,获得积分10
17秒前
寒冷寻桃完成签到 ,获得积分10
22秒前
cici完成签到 ,获得积分10
24秒前
25秒前
you完成签到 ,获得积分10
29秒前
30秒前
fan发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
35秒前
roundtree完成签到 ,获得积分0
35秒前
fatcat完成签到,获得积分10
41秒前
高速旋转老沁完成签到 ,获得积分10
42秒前
风吹而过完成签到 ,获得积分10
44秒前
whuhustwit完成签到,获得积分10
46秒前
SciEngineerX完成签到,获得积分10
49秒前
江幻天完成签到,获得积分10
1分钟前
司纤户羽完成签到 ,获得积分10
1分钟前
haiwei完成签到 ,获得积分10
1分钟前
麦麦脆汁鸡完成签到 ,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
璇璇完成签到 ,获得积分10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
lishuang5发布了新的文献求助10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
独步出营完成签到 ,获得积分10
1分钟前
为你钟情完成签到 ,获得积分10
1分钟前
小曦仔发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960155
求助须知:如何正确求助?哪些是违规求助? 3506291
关于积分的说明 11128887
捐赠科研通 3238457
什么是DOI,文献DOI怎么找? 1789736
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095