已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders

药物重新定位 药品 药物靶点 疾病 药物发现 重新调整用途 计算机科学 批准的药物 机制(生物学) 人工智能 特征(语言学) 机器学习 医学 计算生物学 生物信息学 药理学 生物 认识论 哲学 病理 语言学 生态学
作者
Xingxin Pan,Jun Yun,Zeynep H. Coban Akdemir,Xiaoqian Jiang,Erxi Wu,Jason H. Huang,Nidhi Sahni,S. Stephen Yi
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:21: 1533-1542 被引量:14
标识
DOI:10.1016/j.csbj.2023.02.004
摘要

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
指南针指北完成签到 ,获得积分10
刚刚
能HJY发布了新的文献求助10
刚刚
耍酷楼房发布了新的文献求助10
1秒前
2秒前
Friday完成签到,获得积分10
3秒前
科研通AI6应助jbtjht采纳,获得10
5秒前
刘良贵发布了新的文献求助10
5秒前
炒米粉完成签到,获得积分10
5秒前
6秒前
keyango完成签到 ,获得积分10
7秒前
半分甜完成签到,获得积分10
7秒前
8秒前
10秒前
11秒前
13秒前
小小发布了新的文献求助10
13秒前
浮游应助hrpppp采纳,获得30
13秒前
磐xst完成签到 ,获得积分10
13秒前
细雨微凉完成签到 ,获得积分10
14秒前
velsaber完成签到,获得积分10
18秒前
杨迪祥完成签到 ,获得积分10
19秒前
20秒前
sj发布了新的文献求助20
20秒前
三点遇见柴完成签到,获得积分10
21秒前
qianshui完成签到 ,获得积分10
21秒前
852应助滴嘟滴嘟采纳,获得10
22秒前
23秒前
浮游应助七页禾采纳,获得10
26秒前
111发布了新的文献求助10
26秒前
27秒前
fazat发布了新的文献求助10
27秒前
朱美润完成签到 ,获得积分10
28秒前
changping应助zhangxin采纳,获得10
29秒前
29秒前
李爱国应助noryan采纳,获得10
29秒前
我叫不紧张完成签到,获得积分10
30秒前
31秒前
隐形曼青应助sj采纳,获得10
32秒前
合适猫咪完成签到,获得积分20
32秒前
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467