已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders

药物重新定位 药品 药物靶点 疾病 药物发现 重新调整用途 计算机科学 批准的药物 机制(生物学) 人工智能 特征(语言学) 机器学习 医学 计算生物学 生物信息学 药理学 生物 认识论 哲学 病理 语言学 生态学
作者
Xingxin Pan,Jun Yun,Zeynep H. Coban Akdemir,Xiaoqian Jiang,Erxi Wu,Jason H. Huang,Nidhi Sahni,S. Stephen Yi
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 1533-1542 被引量:14
标识
DOI:10.1016/j.csbj.2023.02.004
摘要

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leijh123完成签到,获得积分10
1秒前
1秒前
3秒前
是一颗大树呀完成签到,获得积分10
3秒前
王先生发布了新的文献求助10
3秒前
4秒前
欣慰的夏彤给雨村的求助进行了留言
4秒前
4秒前
尾巴完成签到,获得积分10
5秒前
陆沉发布了新的文献求助10
6秒前
英俊的铭应助chigga采纳,获得10
6秒前
清秀的碧彤完成签到,获得积分10
6秒前
机灵剑通完成签到,获得积分10
6秒前
Carrots完成签到 ,获得积分10
8秒前
群山发布了新的文献求助30
9秒前
koalafish发布了新的文献求助10
10秒前
Summer完成签到 ,获得积分10
10秒前
11秒前
jiayou完成签到,获得积分10
11秒前
彭于晏应助keepory86采纳,获得30
11秒前
坐雨赏花完成签到 ,获得积分10
15秒前
贾靖涵发布了新的文献求助10
15秒前
15秒前
18485649437发布了新的文献求助10
16秒前
青葱鱼块完成签到 ,获得积分10
16秒前
17秒前
安详的夜春完成签到 ,获得积分10
17秒前
shame完成签到 ,获得积分10
18秒前
星辰大海应助布吉岛采纳,获得10
18秒前
轻松的小天鹅完成签到,获得积分10
18秒前
执着艳完成签到 ,获得积分10
19秒前
qqazws888完成签到 ,获得积分10
21秒前
怡然的复天完成签到,获得积分10
21秒前
哈密哈密完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
XinEr完成签到 ,获得积分10
23秒前
啦啦啦完成签到,获得积分10
23秒前
25秒前
25秒前
Retromer完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004