AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders

药物重新定位 药品 药物靶点 疾病 药物发现 重新调整用途 计算机科学 批准的药物 机制(生物学) 人工智能 特征(语言学) 机器学习 医学 计算生物学 生物信息学 药理学 生物 认识论 哲学 病理 语言学 生态学
作者
Xingxin Pan,Jun Yun,Zeynep H. Coban Akdemir,Xiaoqian Jiang,Erxi Wu,Jason H. Huang,Nidhi Sahni,S. Stephen Yi
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 1533-1542 被引量:14
标识
DOI:10.1016/j.csbj.2023.02.004
摘要

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
wang完成签到 ,获得积分10
2秒前
3秒前
spencer177完成签到,获得积分10
3秒前
4秒前
今后应助小苗采纳,获得10
4秒前
凯里欧文发布了新的文献求助10
4秒前
4秒前
缓慢的百川完成签到,获得积分20
5秒前
5秒前
转身在街角完成签到,获得积分10
7秒前
Jonathan应助小宝妈采纳,获得10
7秒前
7秒前
852应助子冈几号采纳,获得10
8秒前
愉快雪兰发布了新的文献求助10
8秒前
8秒前
BPX发布了新的文献求助10
9秒前
9秒前
9秒前
赘婿应助李振华采纳,获得10
9秒前
FashionBoy应助apple810采纳,获得10
10秒前
好大白关注了科研通微信公众号
10秒前
体贴的一笑完成签到,获得积分20
10秒前
共享精神应助勤奋牛排采纳,获得10
10秒前
lewis发布了新的文献求助10
12秒前
jingjing发布了新的文献求助10
13秒前
13秒前
欢喜醉香发布了新的文献求助10
14秒前
duwei完成签到,获得积分20
14秒前
Lucas应助体贴的一笑采纳,获得10
15秒前
FashionBoy应助likes采纳,获得30
16秒前
2339346348完成签到,获得积分20
16秒前
叶子发布了新的文献求助10
17秒前
加菲完成签到,获得积分10
17秒前
隐形曼青应助orange9采纳,获得10
19秒前
852应助冰咖啡采纳,获得10
21秒前
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123020
求助须知:如何正确求助?哪些是违规求助? 2773567
关于积分的说明 7718207
捐赠科研通 2429101
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220