化学
荧光
羧酸酯酶
罗丹明
检出限
内生
生物物理学
生物化学
色谱法
酶
物理
量子力学
生物
作者
Jia Song,Jiaying Yu,Kai Sun,Zhi‐Xin Chen,Xiaoxiao Xing,Yumeng Yang,Chunyu Sun,Zhifei Wang
标识
DOI:10.1080/00032719.2023.2175213
摘要
AbstractGiven the important role of carboxylesterase 2 (CES2) in the metabolism of various esters, it is of significance to develop a tool to determine endogenous CES2 activity in a rapid and highly selective manner. In this work, an "off-on" rhodamine-based fluorescent probe is reported as an effective tool for CES2 activity. Based on the substrate recognition preference of CES2 (large alcohol and small acyl groups), the probe with dimethyl carbamate as the recognition group performs well in terms of selectivity and sensitivity to CES2. The fluorescence switching control of the probe for CES2 was achieved by using the spirolactone structure of rhodamine. The probe shows the fast generation of a fluorescence signal at 634 nm upon hydrolysis of CES2 with excitation at 578 nm. The results showed a linear relationship between the fluorescence intensity at 634 nm and the CES2 activity from 0 to 4 μg/mL. The probe reacts rapidly with CES2, and the reaction is stable within 40 minutes. The probe is highly selective for CES2, with a detection limit as low as 0.303 μg/mL. In addition, the probe has currently been successfully utilized to evaluate CES2 activity in living cells. Hence, this probe is anticipated to be significant in identifying endogenous CES2 activity in intricate biological settings.Keywords: Carboxylesterase 2cell imagingfluorescent probedimethyl carbamaterhodamine Conflicts of interestThe authors report there are no competing interests to declare.Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China (81771976), the National Key Research and Development Program of China (Grant 2018YFC1901202), and the State Key Laboratory of Pathogen and Biosecurity (Academy of Military Medical Science, SKLPBS2134).
科研通智能强力驱动
Strongly Powered by AbleSci AI