Analyzing Extreme Sea State Conditions by Time-Series Simulation Accounting for Seasonality

自相关 极值理论 系列(地层学) 畸形波 广义极值分布 统计 偏自我相关函数 时间序列 数学 自回归积分移动平均 地质学 物理 古生物学 非线性系统 量子力学
作者
Erik Vanem
出处
期刊:Journal of offshore mechanics and Arctic engineering [ASM International]
卷期号:145 (5)
标识
DOI:10.1115/1.4056786
摘要

Abstract This article presents an extreme value analysis on data of significant wave height based on time-series simulation. A method to simulate time series with given marginal distribution and preserving the autocorrelation structure in the data is applied to significant wave height data. Then, extreme value analysis is performed by simulating from the fitted time-series model that preserves both the marginal probability distribution and the autocorrelation. In this way, the effect of serial correlation on the extreme values can be taken into account, without subsampling and de-clustering of the data. The effect of serial correlation on estimating extreme wave conditions have previously been highlighted, and failure to account for this effect will typically lead to an overestimation of extreme conditions. This is demonstrated by this study, which compares extreme value estimates from the simulated times-series model with estimates obtained directly from the marginal distribution assuming that 3-h significant wave heights are independent and identically distributed. A dataset of significant wave height provided as part of a second benchmark exercise on environmental extremes that was presented at OMAE 2021 has been analyzed. This article is an extension of a study presented at OMAE 2022 (OMAE2022-78795) and includes additional preprocessing of the data to account for seasonality and new results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打屁飞发布了新的文献求助10
3秒前
大模型应助哈哈采纳,获得10
3秒前
凊嗏淡墨完成签到,获得积分10
4秒前
wanci应助xm采纳,获得10
6秒前
思源应助TIWOSS采纳,获得10
6秒前
科研美少女完成签到 ,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得30
9秒前
田様应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
11秒前
lilian完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
15秒前
15秒前
15秒前
欧阳万仇发布了新的文献求助10
16秒前
打屁飞完成签到,获得积分10
16秒前
文献完成签到 ,获得积分10
17秒前
xiu发布了新的文献求助10
18秒前
xm发布了新的文献求助10
18秒前
Judith完成签到,获得积分10
18秒前
zz发布了新的文献求助10
19秒前
hhp完成签到 ,获得积分10
20秒前
mark完成签到,获得积分10
22秒前
华仔应助墨白采纳,获得10
22秒前
sunshine完成签到,获得积分10
23秒前
淡定傲儿完成签到,获得积分10
23秒前
ellen完成签到,获得积分10
24秒前
hhp关注了科研通微信公众号
25秒前
共享精神应助xm采纳,获得10
25秒前
katy完成签到,获得积分10
26秒前
27秒前
LinglongCai完成签到 ,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478