计算机科学
成对比较
库存(枪支)
多元统计
计量经济学
股票市场
动力学(音乐)
订单簿
内部模型
订单(交换)
人工智能
机器学习
经济
财务
工程类
控制(管理)
古生物学
马
物理
生物
机械工程
声学
作者
Thanh Trung Huynh,Minh Hieu Nguyen,Thành Tâm Nguyên,Phi Le Nguyen,Matthias Weidlich,Quoc Viet Hung Nguyen,Karl Aberer
标识
DOI:10.1145/3539597.3570427
摘要
Advances in deep neural network (DNN) architectures have enabled new prediction techniques for stock market data. Unlike other multivariate time-series data, stock markets show two unique characteristics: (i) multi-order dynamics, as stock prices are affected by strong non-pairwise correlations (e.g., within the same industry); and (ii) internal dynamics, as each individual stock shows some particular behaviour. Recent DNN-based methods capture multi-order dynamics using hypergraphs, but rely on the Fourier basis in the convolution, which is both inefficient and ineffective. In addition, they largely ignore internal dynamics by adopting the same model for each stock, which implies a severe information loss.
科研通智能强力驱动
Strongly Powered by AbleSci AI