Survival Nomogram for Patients With Locally Advanced Breast Cancer Undergoing Immediate Breast Reconstruction: A SEER Population-Based Study

列线图 医学 乳腺癌 肿瘤科 比例危险模型 内科学 接收机工作特性 一致性 监测、流行病学和最终结果 人口 单变量 流行病学 妇科 癌症 癌症登记处 统计 多元统计 环境卫生 数学
作者
Jiahao Pan,Liying Peng,Cong Xia,Anqi Wang,Xiuwen Tong,Xipei Chen,Jian Zhang,Xinyun Xu
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:23 (4): e219-e229 被引量:2
标识
DOI:10.1016/j.clbc.2023.02.008
摘要

This study aimed to construct a nomogram to provide prognostic references for patients with locally advanced breast cancer (LABC) to receive immediate breast reconstruction (IBR).All data were obtained from the Surveillance, Epidemiology and End Results (SEER) database. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and best subset regression (BSR), separately followed by backward stepwise multivariable Cox, were used to construct the nomogram. Risk stratification was established after validation.A total of 6,285 patients were enrolled to generate the training group (n = 3,466) and the test group (n = 2,819) by geographical split. Age, marital status, grade, T staging, N staging, radiotherapy, chemotherapy, estrogen receptor status (ER), progesterone receptor status (PR) and human epidermal growth factor receptor type 2 status (HER2) were used to fit the nomogram. The overall Harrell's concordance index (C-index) was 0.772 in the training group and 0.762 in the test group. The area under the receiver operator characteristic curves (AUC) at 3-year and 5-year were respectively 0.824 and 0.720 in the training group, 0.792 and 0.733 in the test group. The calibration curves showed great consistency in both groups. A dynamic nomogram (https://dcpanfromsh.shinyapps.io/NomforLABCafterIBR/) was developed.A nomogram was developed and validated that predicts prognosis more accurately than the AJCC 7th stage and can be used as a reference for decision-making in LABC patients receiving IBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周小夭完成签到,获得积分10
1秒前
天真的皓轩完成签到,获得积分10
1秒前
隐形曼青应助残剑月采纳,获得10
1秒前
2秒前
勇敢发布了新的文献求助10
2秒前
傅宛白发布了新的文献求助10
2秒前
Shark完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
爆米花应助myq采纳,获得10
4秒前
Jasper应助优雅的冷卉采纳,获得10
5秒前
5秒前
谢大喵发布了新的文献求助10
5秒前
斯文败类应助Zyxx采纳,获得10
5秒前
evelyn发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
罗柠七发布了新的文献求助20
6秒前
语物完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
领导范儿应助方旋采纳,获得10
7秒前
等待戈多完成签到,获得积分10
8秒前
8秒前
大头发布了新的文献求助20
9秒前
caigou完成签到,获得积分10
9秒前
ll发布了新的文献求助10
9秒前
Shark发布了新的文献求助10
10秒前
元谷雪发布了新的文献求助10
11秒前
11秒前
12秒前
金福珠发布了新的文献求助10
12秒前
qiii发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
Wind应助ichia采纳,获得10
14秒前
yu完成签到,获得积分20
14秒前
14秒前
赘婿应助饱满凡灵采纳,获得30
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233