已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms

人工智能 计算机科学 机器学习
作者
Weijie Sun,Sunil V. Kalmady,Nariman Sepehrvand,Amir Salimi,Yousef Nademi,Kevin R. Bainey,Justin A. Ezekowitz,Russell Greiner,Abram Hindle,Finlay A. McAlister,Roopinder K. Sandhu,Padma Kaul
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:6 (1) 被引量:22
标识
DOI:10.1038/s41746-023-00765-3
摘要

The feasibility and value of linking electrocardiogram (ECG) data to longitudinal population-level administrative health data to facilitate the development of a learning healthcare system has not been fully explored. We developed ECG-based machine learning models to predict risk of mortality among patients presenting to an emergency department or hospital for any reason. Using the 12-lead ECG traces and measurements from 1,605,268 ECGs from 748,773 healthcare episodes of 244,077 patients (2007-2020) in Alberta, Canada, we developed and validated ResNet-based Deep Learning (DL) and gradient boosting-based XGBoost (XGB) models to predict 30-day, 1-year, and 5-year mortality. The models for 30-day, 1-year, and 5-year mortality were trained on 146,173, 141,072, and 111,020 patients and evaluated on 97,144, 89,379, and 55,650 patients, respectively. In the evaluation cohort, 7.6%, 17.3%, and 32.9% patients died by 30-days, 1-year, and 5-years, respectively. ResNet models based on ECG traces alone had good-to-excellent performance with area under receiver operating characteristic curve (AUROC) of 0.843 (95% CI: 0.838-0.848), 0.812 (0.808-0.816), and 0.798 (0.792-0.803) for 30-day, 1-year and 5-year prediction, respectively; and were superior to XGB models based on ECG measurements with AUROC of 0.782 (0.776-0.789), 0.784 (0.780-0.788), and 0.746 (0.740-0.751). This study demonstrates the validity of ECG-based DL mortality prediction models at the population-level that can be leveraged for prognostication at point of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BINGBING1230发布了新的文献求助10
1秒前
北冥完成签到,获得积分10
3秒前
3秒前
酷波er应助谢大喵采纳,获得10
6秒前
胖胖完成签到 ,获得积分10
7秒前
迷路炎彬完成签到,获得积分10
7秒前
JamesPei应助北冥采纳,获得20
8秒前
彭于晏应助冬雾采纳,获得10
9秒前
9秒前
sunbigfly发布了新的文献求助10
9秒前
12秒前
spotlight完成签到,获得积分10
12秒前
kento应助drtianyunhong采纳,获得50
14秒前
高大寒梦完成签到,获得积分10
15秒前
崔大冠发布了新的文献求助10
15秒前
自觉乌冬面完成签到,获得积分20
16秒前
zf2023发布了新的文献求助10
17秒前
爆炒鱼丸发布了新的文献求助10
17秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
20秒前
20秒前
哈哈哈哈完成签到,获得积分10
23秒前
dicc发布了新的文献求助10
23秒前
xiaoxiao晓发布了新的文献求助10
26秒前
可爱猫完成签到 ,获得积分10
26秒前
28秒前
shjyang完成签到,获得积分0
28秒前
29秒前
浮游应助Thien采纳,获得10
30秒前
Jasper应助DaMin32767采纳,获得10
30秒前
31秒前
大力的翼发布了新的文献求助10
32秒前
32秒前
32秒前
可爱猫关注了科研通微信公众号
32秒前
雪白白猫完成签到 ,获得积分10
33秒前
JintaoWang发布了新的文献求助10
33秒前
希望天下0贩的0应助11采纳,获得10
33秒前
万能图书馆应助春风不语采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006299
求助须知:如何正确求助?哪些是违规求助? 4249682
关于积分的说明 13241763
捐赠科研通 4049644
什么是DOI,文献DOI怎么找? 2215399
邀请新用户注册赠送积分活动 1225330
关于科研通互助平台的介绍 1145939