Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 政治学 语言学 政治 哲学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王若琪完成签到 ,获得积分10
2秒前
3秒前
娜行完成签到 ,获得积分10
4秒前
Moonchild完成签到 ,获得积分10
4秒前
甜蜜鹭洋完成签到 ,获得积分10
6秒前
孟雯毓完成签到,获得积分10
6秒前
幸运雨点完成签到,获得积分10
6秒前
7秒前
拼搏迎梦完成签到,获得积分10
7秒前
CodeCraft应助海獭敲牡蛎采纳,获得10
8秒前
fff完成签到 ,获得积分10
12秒前
nakl发布了新的文献求助10
13秒前
哈哈哈大赞完成签到,获得积分10
13秒前
白枫完成签到 ,获得积分10
14秒前
xxxxqqqqaaa完成签到,获得积分10
15秒前
xyzlancet完成签到,获得积分10
16秒前
韦远侵完成签到,获得积分10
18秒前
MTF完成签到 ,获得积分10
20秒前
番茄炒西红柿完成签到,获得积分10
21秒前
egoistMM完成签到,获得积分10
22秒前
cxl完成签到,获得积分10
23秒前
在水一方应助科研通管家采纳,获得10
24秒前
香蕉诗蕊应助科研通管家采纳,获得20
24秒前
lylyspeechless完成签到,获得积分10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
林晚停应助科研通管家采纳,获得10
24秒前
妩媚的海应助科研通管家采纳,获得50
24秒前
香蕉诗蕊应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
小蜗爬爬应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
Zx_1993应助科研通管家采纳,获得10
24秒前
Frank完成签到 ,获得积分10
24秒前
无极微光应助科研通管家采纳,获得20
24秒前
Lucas应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173