亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 哲学 政治 语言学 政治学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:9
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助铭铭铭采纳,获得10
7秒前
lezbj99发布了新的文献求助30
9秒前
13秒前
1461644768发布了新的文献求助30
19秒前
1461644768完成签到,获得积分10
23秒前
31秒前
万能图书馆应助洛克采纳,获得10
44秒前
52秒前
超人不会飞完成签到,获得积分10
57秒前
铭铭铭发布了新的文献求助10
58秒前
铭铭铭完成签到,获得积分10
1分钟前
土豪的摩托完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
CipherSage应助种花的白袍采纳,获得30
1分钟前
kingJames发布了新的文献求助10
1分钟前
1分钟前
1分钟前
SciGPT应助kingJames采纳,获得10
1分钟前
胡嘉琪完成签到 ,获得积分10
2分钟前
水的很厉害完成签到,获得积分10
2分钟前
2分钟前
2分钟前
bbbbb发布了新的文献求助30
2分钟前
铉莉发布了新的文献求助10
2分钟前
2分钟前
JamesPei应助livialiu采纳,获得10
2分钟前
深情安青应助铉莉采纳,获得10
2分钟前
铉莉完成签到,获得积分10
2分钟前
VDC应助livialiu采纳,获得30
2分钟前
2分钟前
2分钟前
bbbbb发布了新的文献求助10
2分钟前
livialiu发布了新的文献求助10
2分钟前
3分钟前
livialiu完成签到,获得积分10
3分钟前
Tiam完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896