Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 哲学 政治 语言学 政治学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
aging00发布了新的文献求助10
1秒前
doby发布了新的文献求助10
3秒前
秀丽小猫咪应助殷勤的紫槐采纳,获得500
3秒前
4秒前
清脆仙人掌完成签到 ,获得积分10
6秒前
7秒前
谦让寻凝完成签到 ,获得积分10
7秒前
donwe发布了新的文献求助10
8秒前
9秒前
10秒前
baiyeok发布了新的文献求助30
11秒前
zqzqz完成签到,获得积分10
12秒前
13秒前
鸡蛋布丁发布了新的文献求助10
14秒前
星光完成签到,获得积分10
15秒前
15秒前
土土完成签到,获得积分10
16秒前
简让完成签到 ,获得积分10
16秒前
20秒前
12木发布了新的文献求助10
22秒前
24秒前
29秒前
12木完成签到,获得积分10
31秒前
馍夹菜完成签到,获得积分10
34秒前
34秒前
LiQi完成签到,获得积分10
34秒前
38秒前
科目三应助zhu采纳,获得10
42秒前
Shan发布了新的文献求助10
43秒前
44秒前
浮游应助闭眼听风雨采纳,获得10
45秒前
yyanxuemin919发布了新的文献求助10
46秒前
青葱鱼块完成签到 ,获得积分10
49秒前
浅沐发布了新的文献求助10
49秒前
3dyf发布了新的文献求助10
51秒前
52秒前
Keyto7应助Wenfeifei采纳,获得10
54秒前
丹D完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471