Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 政治学 语言学 政治 哲学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小陈完成签到 ,获得积分10
1秒前
yjwang61发布了新的文献求助10
2秒前
婧婧婧完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
leaguy发布了新的文献求助10
3秒前
3秒前
杨怡红发布了新的文献求助10
4秒前
郭素玲发布了新的文献求助30
5秒前
LGP完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
终梦应助俊逸成危采纳,获得10
6秒前
Akim应助wgl200212采纳,获得10
6秒前
ding应助蛋堡采纳,获得10
6秒前
6秒前
7秒前
义气芷荷完成签到,获得积分10
7秒前
ARK发布了新的文献求助30
7秒前
7秒前
轩轩发布了新的文献求助10
7秒前
hsa_ID完成签到,获得积分20
7秒前
婧婧婧发布了新的文献求助10
7秒前
7秒前
甜美静白发布了新的文献求助10
7秒前
james发布了新的文献求助10
7秒前
科研通AI6应助irisjlj采纳,获得10
8秒前
孙洪琼完成签到,获得积分20
8秒前
8秒前
橙是什么呈完成签到,获得积分10
10秒前
10秒前
orixero应助暖暖采纳,获得10
11秒前
好好发布了新的文献求助10
11秒前
陈文娜发布了新的文献求助10
11秒前
阳光he完成签到,获得积分10
11秒前
11秒前
好好发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477903
求助须知:如何正确求助?哪些是违规求助? 4579712
关于积分的说明 14370069
捐赠科研通 4507919
什么是DOI,文献DOI怎么找? 2470291
邀请新用户注册赠送积分活动 1457179
关于科研通互助平台的介绍 1431135