Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 哲学 政治 语言学 政治学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
感动的怀莲应助Carmen采纳,获得10
刚刚
浆果肉丸完成签到,获得积分10
1秒前
1秒前
1秒前
赘婿应助安详的觅风采纳,获得10
1秒前
爆米花应助山手采纳,获得10
1秒前
2秒前
负负得正完成签到,获得积分10
2秒前
2秒前
Imogen发布了新的文献求助10
2秒前
2秒前
清新的易真完成签到,获得积分10
2秒前
脑洞疼应助文艺明杰采纳,获得10
2秒前
wanci应助白英采纳,获得20
2秒前
goofs完成签到,获得积分10
2秒前
vv发布了新的文献求助10
3秒前
3秒前
会发财的学术家完成签到,获得积分10
4秒前
淡定碧玉发布了新的文献求助10
4秒前
彭于晏应助车车采纳,获得10
4秒前
4秒前
Nature发布了新的文献求助10
5秒前
5秒前
TARS完成签到,获得积分10
5秒前
fairy完成签到 ,获得积分10
5秒前
adazbq发布了新的文献求助10
5秒前
妙不可言完成签到,获得积分10
5秒前
6秒前
leahlin发布了新的文献求助10
6秒前
感恩发布了新的文献求助10
6秒前
6秒前
SciGPT应助重新开始采纳,获得10
6秒前
7秒前
打打应助唐唐采纳,获得10
7秒前
8秒前
大桶水果茶完成签到,获得积分10
8秒前
延文星发布了新的文献求助10
9秒前
zzw发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418