Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 哲学 政治 语言学 政治学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助xh采纳,获得10
刚刚
张雅琪应助冷静一一采纳,获得10
1秒前
刻苦惜萍发布了新的文献求助10
2秒前
2秒前
KK发布了新的文献求助10
3秒前
Max发布了新的文献求助10
3秒前
daemon850121完成签到,获得积分10
3秒前
完美世界应助htt采纳,获得30
4秒前
4秒前
4秒前
4秒前
4秒前
Graceluxx发布了新的文献求助10
4秒前
英勇明雪完成签到 ,获得积分10
4秒前
整齐便当发布了新的文献求助20
5秒前
5秒前
5秒前
6秒前
Hello应助可爱绮采纳,获得10
6秒前
材料化学左亚坤完成签到,获得积分10
7秒前
7秒前
zqq发布了新的文献求助10
7秒前
小二郎应助龙骑士25采纳,获得30
7秒前
hqlran发布了新的文献求助10
8秒前
生动曼冬发布了新的文献求助10
8秒前
8秒前
十字勋章发布了新的文献求助30
8秒前
8秒前
猫先生发布了新的文献求助10
9秒前
田様应助阮楷瑞采纳,获得10
9秒前
何帅鹏发布了新的文献求助10
9秒前
佳佳完成签到,获得积分10
9秒前
Bazinga发布了新的文献求助10
9秒前
Jasper应助黄丽采纳,获得10
9秒前
ning发布了新的文献求助10
9秒前
科研通AI6应助于特采纳,获得10
9秒前
10秒前
BareBear应助123456采纳,获得10
10秒前
赘婿应助权志龙采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414