清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 政治学 语言学 政治 哲学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助紫荆采纳,获得10
34秒前
45秒前
w40701完成签到,获得积分10
46秒前
芹123发布了新的文献求助10
47秒前
紫荆发布了新的文献求助10
50秒前
科研小白完成签到,获得积分10
1分钟前
芹123发布了新的文献求助10
1分钟前
超体完成签到 ,获得积分10
1分钟前
芹123完成签到,获得积分10
1分钟前
2分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
123完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ukz37752发布了新的文献求助200
3分钟前
4分钟前
赘婿应助科研通管家采纳,获得50
4分钟前
4分钟前
nixgnef发布了新的文献求助10
4分钟前
科研通AI5应助armpit采纳,获得10
4分钟前
4分钟前
4分钟前
紫熊完成签到,获得积分10
4分钟前
JamesPei应助snowskating采纳,获得10
4分钟前
AmyHu完成签到,获得积分10
4分钟前
jiacheng发布了新的文献求助10
5分钟前
Alisha完成签到,获得积分10
5分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
6分钟前
snowskating发布了新的文献求助10
6分钟前
隐形曼青应助jiacheng采纳,获得10
6分钟前
6分钟前
armpit发布了新的文献求助10
6分钟前
7分钟前
armpit完成签到,获得积分10
7分钟前
FengyaoWang完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032610
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675