亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 政治学 语言学 政治 哲学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 243-256 被引量:29
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonionnn完成签到,获得积分10
2秒前
3秒前
meng发布了新的文献求助10
6秒前
Thanks完成签到 ,获得积分10
10秒前
Zhuoin完成签到,获得积分10
11秒前
Viiigo完成签到,获得积分10
14秒前
Linos应助jhgg8009采纳,获得50
19秒前
26秒前
开心快乐水完成签到 ,获得积分10
27秒前
Hillson发布了新的文献求助10
30秒前
h0jian09完成签到,获得积分10
32秒前
科研通AI2S应助zlx采纳,获得10
34秒前
nihao完成签到 ,获得积分10
35秒前
夏夏完成签到,获得积分20
40秒前
完美世界应助科研通管家采纳,获得10
43秒前
科研通AI6应助YJ888采纳,获得10
43秒前
上官若男应助科研通管家采纳,获得10
43秒前
晓奕应助科研通管家采纳,获得10
43秒前
852应助科研通管家采纳,获得10
43秒前
48秒前
50秒前
沉默羔羊完成签到,获得积分10
55秒前
Ryan完成签到,获得积分10
59秒前
59秒前
1分钟前
RCheng发布了新的文献求助10
1分钟前
简单小鸭子完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
热情礼貌一问三不知完成签到 ,获得积分10
1分钟前
SHF完成签到,获得积分10
1分钟前
Chenyol发布了新的文献求助10
1分钟前
怡然远望完成签到 ,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
kexuezhongxinhu完成签到 ,获得积分10
1分钟前
科研通AI2S应助虚心的荧采纳,获得10
1分钟前
尚尚发布了新的文献求助10
1分钟前
阿晨想看文献完成签到,获得积分10
1分钟前
imcwj完成签到 ,获得积分10
1分钟前
闲鱼耶鹤完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634601
捐赠科研通 4575807
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485270
关于科研通互助平台的介绍 1456366