Causal inference multi-agent reinforcement learning for traffic signal control

强化学习 计算机科学 推论 特征(语言学) 代表(政治) 信号(编程语言) 人工智能 机器学习 政治学 语言学 政治 哲学 程序设计语言 法学
作者
Shantian Yang,Bo Yang,Zheng Zeng,Zhongfeng Kang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 243-256 被引量:9
标识
DOI:10.1016/j.inffus.2023.02.009
摘要

A primary challenge in multi-agent reinforcement learning for traffic signal control is to produce effective cooperative traffic-signal policies in non-stationary multi-agent traffic environments. However, each agent suffers from its local non-stationary traffic environment caused by the time-varying traffic-signal policies of adjacent agents; At the same time, different agents also produce time-varying traffic-signal policies, which further results in the non-stationarity of the whole traffic environment, so these produced traffic-signal policies may be ineffective. In this work, we propose a Causal Inference Multi-Agent reinforcement learning (CI-MA) algorithm, which can alleviate the non-stationarity of multi-agent traffic environments from both feature representation and optimization, eventually helps to produce effective cooperative traffic-signal policies. Specifically, a Causal-Inference (CI) model is first designed to reason about and tackle the non-stationarity of multi-agent traffic environments by both acquiring feature representation distributions and deriving variational lower bounds (i.e., objective functions); And then, based on the designed CI model, we propose a CI-MA algorithm, in which the feature representations are acquired from the non-stationarity of multi-agent traffic environments at both task level and timestep level, the acquired feature representations are used to produce cooperative traffic-signal policies and Q-values for multiple agents; Finally the corresponding objective functions optimize the whole algorithm from both causal inference and multi-agent reinforcement learning. Experiments are conducted in different non-stationary multi-agent traffic environments. Results show that CI-MA algorithm outperforms other state-of-the-art algorithms, and demonstrate that the proposed algorithm trained in synthetic-traffic environments can be effectively transferred to both synthetic- and real-traffic environments with non-stationarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
慕青应助卿卿采纳,获得10
1秒前
希望天下0贩的0应助Wang采纳,获得10
1秒前
可乐清欢发布了新的文献求助10
2秒前
穆仰完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
xhj123完成签到,获得积分10
5秒前
执着又蓝发布了新的文献求助10
5秒前
风清扬发布了新的文献求助10
6秒前
wfy发布了新的文献求助30
9秒前
10秒前
陆小果完成签到,获得积分10
10秒前
执着又蓝完成签到,获得积分20
10秒前
蛋妞儿发布了新的文献求助10
10秒前
海盗船长完成签到,获得积分10
11秒前
顾矜应助冻瓜采纳,获得10
12秒前
上官若男应助T拐拐采纳,获得10
12秒前
糊涂的觅海完成签到 ,获得积分10
12秒前
li发布了新的文献求助200
14秒前
南北发布了新的文献求助10
14秒前
刘柑橘完成签到,获得积分10
15秒前
lalala发布了新的文献求助10
16秒前
16秒前
小冬猫完成签到 ,获得积分10
17秒前
18秒前
20秒前
紫色哀伤完成签到,获得积分10
20秒前
you发布了新的文献求助10
21秒前
DreamMaker发布了新的文献求助10
21秒前
忧虑的梦槐完成签到,获得积分10
23秒前
淡淡的寄灵完成签到,获得积分10
23秒前
风清扬发布了新的文献求助10
24秒前
汉堡包应助FDD采纳,获得10
24秒前
24秒前
Akim应助相信采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011029
求助须知:如何正确求助?哪些是违规求助? 3550660
关于积分的说明 11306082
捐赠科研通 3284968
什么是DOI,文献DOI怎么找? 1810924
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811526