Understanding temporal and spatial patterns of urban activities across demographic groups through geotagged social media data

社会化媒体 地理 人体动力学 比例(比率) 空间生态学 时间尺度 数据科学 自发地理信息 地理标记 计算机科学 地图学 万维网 人工智能 生态学 生物
作者
Haifeng Niu,Elisabete A. Silva
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:100: 101934-101934 被引量:25
标识
DOI:10.1016/j.compenvurbsys.2022.101934
摘要

Large-scale geotagged social media data have been increasingly used for exploring human movement patterns in cities. Challenges of this new data type, such as non-representative users and the lack of activity purposes, remain unsolved and limit its applications in exploring activity-based human patterns in cities. To deal with the above challenges, this paper proposed an analytical framework of social media data enrichment — by revealing the demographic composition of non-representative social media data users and inferring activity purposes of geotagged posts — for better exploring spatial-temporal patterns of human activity in cities. A deep learning model is employed to reveal social media users' age and gender groups from user names, profile images, biographies, and language settings. Eight types of activity purposes are inferred from embedded geo-location by spatially joining with fine-scale building and land use data. Using Greater London as the case study, this paper explores the temporal dynamics of activity purposes with heatmaps of hourly frequency of tweets and identifies spatial differences across age and gender groups using hotspots analysis (Getis–Ord Gi* statistics). This paper demonstrates the application of geotagged social media data in identifying spatial, temporal and demographic patterns of urban activities, which potentially helps shape better place-based and age/gender-sensitive urban policies and planning decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
脑洞疼应助lang采纳,获得10
1秒前
汉堡包应助HjY采纳,获得10
1秒前
1秒前
yann发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
陈均涛完成签到,获得积分20
2秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
初雪应助玛卡巴卡采纳,获得10
3秒前
3秒前
4秒前
4秒前
太叔丹翠完成签到 ,获得积分0
4秒前
Betty发布了新的文献求助30
4秒前
ma121发布了新的文献求助30
4秒前
无聊的黎发布了新的文献求助10
4秒前
5秒前
Mark应助fanqiaqia采纳,获得10
5秒前
小蘑菇应助chx123采纳,获得10
5秒前
5秒前
南曦完成签到,获得积分10
5秒前
科研通AI6.1应助飞鸿影下采纳,获得30
6秒前
NeoWu发布了新的文献求助10
6秒前
昏睡的蟠桃应助姚老表采纳,获得100
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922