Surface normal and Gaussian weight constraints for indoor depth structure completion

深度图 人工智能 嵌入 计算机科学 高斯分布 平滑度 马尔可夫随机场 RGB颜色模型 模式识别(心理学) 数学 算法 计算机视觉 图像(数学) 图像分割 数学分析 物理 量子力学
作者
Dongran Ren,Meng Yang,Jiangfan Wu,Nanning Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109362-109362 被引量:8
标识
DOI:10.1016/j.patcog.2023.109362
摘要

Raw depth maps captured by depth sensors generally contain missing contents due to glossy, transparent, and sparsity problems. Recent methods well completed flat regions of raw depth maps; however, ignored the accuracy of depth structures. In this paper, an effective depth structure completion method is developed to infer missing depth structures. First, a raw depth map is divided into flat regions and depth structures based on a structure prediction network. Second, two local features including surface normals and Gaussian weights are extracted from a reference RGB image to impose constraints on flat regions and depth structures, separately. Third, a kernel least-square module is adopted to handle the texture-copy artifacts problem. Finally, an iterative optimization model is developed by embedding the two constraints into a Markov random field. The cost function of the model comprises three terms, which limit data fidelity between completed depth map and raw depth map, smoothness of flat regions, and accuracy of depth structures, respectively. The proposed method is evaluated on four indoor datasets including Matterport3D, RealSense, ScanNet, and NYUv2, and compared with eight recent baselines. Quantitative results demonstrate that RMSE and MAE of completed depth maps are considerably reduced by 22.0% and 45.3%, respectively. Visual results show the superiority in completing depth structures and suppressing texture-copy artifacts. Generalization test verify the effectiveness on unseen datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的飞雪完成签到 ,获得积分10
刚刚
碧蓝咖啡豆完成签到 ,获得积分10
1秒前
星星完成签到,获得积分10
2秒前
liu发布了新的文献求助10
2秒前
4秒前
4秒前
7秒前
liu完成签到,获得积分20
7秒前
pny发布了新的文献求助10
7秒前
星星发布了新的文献求助10
7秒前
Wensoo发布了新的文献求助10
8秒前
黑黑黑完成签到,获得积分10
9秒前
taotao发布了新的文献求助10
10秒前
Hello应助Root采纳,获得10
10秒前
10秒前
11秒前
15秒前
Timo干物类完成签到,获得积分10
16秒前
小蘑菇应助能干的孤丝采纳,获得10
17秒前
哈哈哈发布了新的文献求助300
17秒前
J11发布了新的文献求助10
17秒前
科研通AI2S应助LHZ采纳,获得10
17秒前
中级中级发布了新的文献求助10
17秒前
liu关闭了liu文献求助
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
英姑应助达叔采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
19秒前
kingwill应助科研通管家采纳,获得20
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
19秒前
如意的山水完成签到 ,获得积分10
20秒前
crazystone完成签到 ,获得积分10
21秒前
21秒前
22秒前
J11完成签到,获得积分10
22秒前
Liusiqi完成签到 ,获得积分20
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557572
求助须知:如何正确求助?哪些是违规求助? 3132664
关于积分的说明 9398623
捐赠科研通 2832834
什么是DOI,文献DOI怎么找? 1557063
邀请新用户注册赠送积分活动 727072
科研通“疑难数据库(出版商)”最低求助积分说明 716184