Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network

强化学习 马尔可夫决策过程 计算机科学 维数之咒 数学优化 基线(sea) 分布式计算 运筹学 马尔可夫过程 人工智能 风险分析(工程) 工程类 数学 医学 统计 海洋学 地质学
作者
Dongkyu Lee,Junho Song
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:239: 109512-109512 被引量:5
标识
DOI:10.1016/j.ress.2023.109512
摘要

Lifeline systems such as transportation and water distribution networks may deteriorate with age, raising the risk of system failure or degradation. Thus, system-level sequential decision-making is essential to address the problem cost-effectively while minimizing the potential loss. Researchers proposed to assess the risk of lifeline systems using Markov Decision Processes (MDPs) to identify a risk-informed operation and maintenance (O&M) policy. In complex systems with many components, however, it is potentially intractable to find MDP solutions because the number of states and action spaces increases exponentially. This paper proposes a multi-agent deep reinforcement learning framework termed parallelized multi-agent Deep Q-Network (PM-DQN) to overcome the curse of dimensionality. The proposed method takes a divide-and-conquer strategy, in which multiple subsystems are identified by community detection, and each agent learns to achieve the O&M policy of the corresponding subsystem. The agents establish policies to minimize the decentralized cost of the cluster unit, including the factorized cost. Such learning processes occur simultaneously in several parallel units, and the trained policies are periodically synchronized with the best ones, thereby improving the master policy. Numerical examples demonstrate that the proposed method outperforms baseline policies, including conventional maintenance schemes and the subsystem-level optimal policy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助Bonnienuit采纳,获得50
2秒前
popooo完成签到,获得积分10
2秒前
3秒前
3秒前
sunnyqqz发布了新的文献求助30
3秒前
QLLW应助星辰坠于海采纳,获得10
3秒前
幸运小狗发布了新的文献求助10
3秒前
慕青应助Ao采纳,获得10
4秒前
Lucas应助程天佑采纳,获得10
4秒前
SC30完成签到,获得积分10
5秒前
Akim应助yyanxuemin919采纳,获得10
6秒前
金秋完成签到,获得积分0
7秒前
kyf完成签到 ,获得积分10
7秒前
常彬完成签到,获得积分10
8秒前
xiaoxixiccccc发布了新的文献求助10
9秒前
orixero应助变化是永恒的采纳,获得10
10秒前
10秒前
shxxy123发布了新的文献求助50
10秒前
冷艳的匪发布了新的文献求助10
11秒前
11秒前
仙女完成签到 ,获得积分10
12秒前
行者无疆发布了新的文献求助10
13秒前
Umind发布了新的文献求助10
15秒前
我是老大应助Jodie采纳,获得10
16秒前
安静真完成签到,获得积分10
19秒前
科研通AI6应助风控采纳,获得10
20秒前
fish完成签到,获得积分10
20秒前
20秒前
PORCO完成签到,获得积分10
23秒前
23秒前
蝉鸣一夏完成签到,获得积分10
24秒前
陈一完成签到,获得积分10
25秒前
安静真发布了新的文献求助10
25秒前
qintiantian完成签到,获得积分10
26秒前
27秒前
27秒前
张zhang发布了新的文献求助10
28秒前
Mine发布了新的文献求助30
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870