Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network

强化学习 马尔可夫决策过程 计算机科学 维数之咒 数学优化 基线(sea) 分布式计算 运筹学 马尔可夫过程 人工智能 风险分析(工程) 工程类 数学 医学 统计 海洋学 地质学
作者
Dongkyu Lee,Junho Song
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:239: 109512-109512 被引量:5
标识
DOI:10.1016/j.ress.2023.109512
摘要

Lifeline systems such as transportation and water distribution networks may deteriorate with age, raising the risk of system failure or degradation. Thus, system-level sequential decision-making is essential to address the problem cost-effectively while minimizing the potential loss. Researchers proposed to assess the risk of lifeline systems using Markov Decision Processes (MDPs) to identify a risk-informed operation and maintenance (O&M) policy. In complex systems with many components, however, it is potentially intractable to find MDP solutions because the number of states and action spaces increases exponentially. This paper proposes a multi-agent deep reinforcement learning framework termed parallelized multi-agent Deep Q-Network (PM-DQN) to overcome the curse of dimensionality. The proposed method takes a divide-and-conquer strategy, in which multiple subsystems are identified by community detection, and each agent learns to achieve the O&M policy of the corresponding subsystem. The agents establish policies to minimize the decentralized cost of the cluster unit, including the factorized cost. Such learning processes occur simultaneously in several parallel units, and the trained policies are periodically synchronized with the best ones, thereby improving the master policy. Numerical examples demonstrate that the proposed method outperforms baseline policies, including conventional maintenance schemes and the subsystem-level optimal policy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
标致晓蓝发布了新的文献求助10
1秒前
wy完成签到,获得积分10
1秒前
虚心依琴发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
SciGPT应助四夕采纳,获得30
5秒前
吴学仕发布了新的文献求助30
5秒前
6秒前
7秒前
甜甜的发布了新的文献求助10
7秒前
7秒前
蝶步韶华发布了新的文献求助10
8秒前
8秒前
9秒前
WAM发布了新的文献求助10
9秒前
10秒前
FelixFelicis完成签到,获得积分10
10秒前
彭于晏应助研友_nxGyxL采纳,获得30
11秒前
12秒前
逆流的鱼发布了新的文献求助10
12秒前
Lucas应助唯伊采纳,获得10
12秒前
大小多少发布了新的文献求助10
13秒前
帕尼灬尼发布了新的文献求助10
13秒前
13秒前
xi完成签到,获得积分10
14秒前
gcr完成签到 ,获得积分10
15秒前
FelixFelicis发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
花川完成签到 ,获得积分10
18秒前
20秒前
浮游应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712