Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network

强化学习 马尔可夫决策过程 计算机科学 维数之咒 数学优化 基线(sea) 分布式计算 运筹学 马尔可夫过程 人工智能 风险分析(工程) 工程类 数学 海洋学 统计 医学 地质学
作者
Dongkyu Lee,Junho Song
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:239: 109512-109512 被引量:5
标识
DOI:10.1016/j.ress.2023.109512
摘要

Lifeline systems such as transportation and water distribution networks may deteriorate with age, raising the risk of system failure or degradation. Thus, system-level sequential decision-making is essential to address the problem cost-effectively while minimizing the potential loss. Researchers proposed to assess the risk of lifeline systems using Markov Decision Processes (MDPs) to identify a risk-informed operation and maintenance (O&M) policy. In complex systems with many components, however, it is potentially intractable to find MDP solutions because the number of states and action spaces increases exponentially. This paper proposes a multi-agent deep reinforcement learning framework termed parallelized multi-agent Deep Q-Network (PM-DQN) to overcome the curse of dimensionality. The proposed method takes a divide-and-conquer strategy, in which multiple subsystems are identified by community detection, and each agent learns to achieve the O&M policy of the corresponding subsystem. The agents establish policies to minimize the decentralized cost of the cluster unit, including the factorized cost. Such learning processes occur simultaneously in several parallel units, and the trained policies are periodically synchronized with the best ones, thereby improving the master policy. Numerical examples demonstrate that the proposed method outperforms baseline policies, including conventional maintenance schemes and the subsystem-level optimal policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MrHua完成签到,获得积分10
刚刚
my完成签到 ,获得积分10
2秒前
SYLH应助莫非采纳,获得10
2秒前
陶辞完成签到,获得积分10
2秒前
3秒前
3秒前
TCB完成签到,获得积分10
3秒前
酷酷剑通发布了新的文献求助10
3秒前
阿治完成签到 ,获得积分10
3秒前
胖飞飞完成签到,获得积分10
3秒前
超爱你完成签到,获得积分20
3秒前
wushuping完成签到,获得积分10
3秒前
安静青亦完成签到 ,获得积分10
4秒前
李爱国应助cole采纳,获得10
4秒前
lisa0612完成签到,获得积分10
4秒前
大江完成签到,获得积分10
4秒前
duoduozs完成签到,获得积分10
5秒前
song完成签到,获得积分20
5秒前
linkman发布了新的文献求助10
5秒前
任婷完成签到,获得积分10
5秒前
畅快大象完成签到,获得积分10
6秒前
h w wang发布了新的文献求助10
6秒前
Jindyla完成签到,获得积分10
6秒前
烂漫香水完成签到 ,获得积分10
6秒前
threewater完成签到,获得积分10
6秒前
云飞扬应助泡芙采纳,获得10
7秒前
7秒前
ting5260完成签到,获得积分10
8秒前
ceeray23发布了新的文献求助20
8秒前
思源应助木木的凤采纳,获得10
8秒前
笑点低不言完成签到,获得积分10
8秒前
9秒前
10秒前
害羞猫咪完成签到,获得积分10
10秒前
cole完成签到,获得积分10
10秒前
木一发布了新的文献求助10
11秒前
Zzzz发布了新的文献求助10
11秒前
木木完成签到,获得积分10
11秒前
atom完成签到,获得积分10
12秒前
陨落的繁星完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478