Carbon emissions accounting and prediction in urban agglomerations from multiple perspectives of production, consumption and income

城市群 温室气体 碳纤维 环境科学 碳核算 自然资源经济学 消费(社会学) 生产(经济) 中国 经济 地理 经济 计算机科学 宏观经济学 考古 社会学 算法 复合数 生物 社会科学 生态学
作者
Wencong Yue,Yangqing Li,Meirong Su,Qionghong Chen,Qiangqiang Rong
出处
期刊:Applied Energy [Elsevier]
卷期号:348: 121445-121445 被引量:16
标识
DOI:10.1016/j.apenergy.2023.121445
摘要

Urban agglomerations (UAs) play a momentous role in carbon reduction. The prerequisites for achieving carbon reduction goals in UAs are accounting and predicting their carbon emissions. When considering carbon reduction goals in China, it is crucial to pay attention to the joint influence of carbon emissions and economic benefits. Hence, in this study, an improved multi-regional input–output (MRIO) approach was established to quantify and predict carbon emissions for the UA, incorporating a biproportional scaling method (RAS) and Latin hypercube sampling (LHS). Specifically, a) the carbon emissions of UAs were quantified using the MRIO model from the perspectives of production, consumption and income; b) the carbon flows between cities in UAs were identified based on final demand and primary inputs, and c) the features of UAs’ carbon emissions in the future were predicted using RAS and LHS. To verify the effectiveness of the approach, a case study of a typical UA region in China [i.e., the Pearl River Delta (PRD)] was proposed. The results showed that the contribution of sectors to carbon emissions could be identified from multiple perspectives, and carbon flows can help regions coordinate emissions reductions. The majority of future carbon emissions would be generated from the areas of population and economic agglomeration (i.e., Guangzhou and Shenzhen), although the growth trend of carbon emissions of those would keep lower. The policy of carbon reduction should be urgently carried out in locations with high carbon emissions growth rates (e.g., Zhaoqing and Zhuhai). To improve the ability for carbon reduction in the PRD, cooperation in multiple cities to promote energy efficiency is advocated. The government should also increase technical support for carbon reduction and consider the balanced development of the economy, population, and resources in the PRD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观翠彤发布了新的文献求助30
1秒前
科研通AI2S应助周周采纳,获得10
1秒前
科研通AI2S应助草木采纳,获得10
3秒前
谷雨发布了新的文献求助10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
卿卿发布了新的文献求助10
4秒前
bkagyin应助donfern采纳,获得10
5秒前
顺利毕业完成签到,获得积分10
6秒前
7秒前
7秒前
木木杨完成签到,获得积分10
7秒前
8秒前
打打应助哈哈哈哈采纳,获得10
9秒前
无比璀璨的番茄完成签到,获得积分10
9秒前
9秒前
哇咔咔完成签到,获得积分10
10秒前
bodhi完成签到,获得积分10
10秒前
ncycg发布了新的文献求助10
10秒前
壮观翠彤完成签到,获得积分10
10秒前
阔达荣轩发布了新的文献求助10
11秒前
CipherSage应助852采纳,获得10
12秒前
哇咔咔发布了新的文献求助10
12秒前
527发布了新的文献求助10
13秒前
saker完成签到,获得积分10
13秒前
研ZZ完成签到,获得积分10
14秒前
15秒前
16秒前
宝海青发布了新的文献求助10
17秒前
大气的雅容应助草木采纳,获得10
17秒前
17秒前
欣欣子发布了新的文献求助10
18秒前
19秒前
20秒前
FashionBoy应助李理采纳,获得10
21秒前
22秒前
23秒前
积极慕梅应助852采纳,获得10
23秒前
lu发布了新的文献求助10
24秒前
多年以后发布了新的文献求助10
25秒前
花痴的裘发布了新的文献求助10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244