清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A multi-objective optimization algorithm for flow shop group scheduling problem with sequence dependent setup time and worker learning

计算机科学 模拟退火 作业车间调度 数学优化 流水车间调度 元启发式 调度(生产过程) 启发式 停工期 整数规划 学习效果 运筹学 工业工程 算法 地铁列车时刻表 数学 工程类 操作系统 经济 微观经济学
作者
Djazia Nadjat Sekkal,Fayçal Belkaid
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120878-120878 被引量:14
标识
DOI:10.1016/j.eswa.2023.120878
摘要

The optimization of production systems has become increasingly important in manufacturing industries due to the growing competition and market demands. One of the overriding concerns of managers is the efficient exploitation of workers' learning to increase output and decrease downtime. The learning effect symbolizes the improvement of workers' ability and performance through the repetition of similar jobs. On the other hand, it is a critical requirement for decision-makers to have effective management of the transportation phase to achieve an optimal production plan. This paper considers a flow shop sequence-dependent group scheduling problem (FSDGS) with a learning effect to minimize two contradictory objective functions, namely makespan and energy consumption. A mixed-integer linear programming model is proposed to find optimal jobs, group schedules, and appropriate production and transportation speeds to enhance the overall performance of the system. Due to the complexity of the planning process, we propose lower bounds and an efficient resolution method based on multi-objective simulated annealing metaheuristic (MOSA), enhanced by a local search procedure to tackle this problem. The proposed method is evaluated through several experiments based on a real case study, using different learning rates and setup time ratio levels. The obtained results demonstrate the effectiveness of the algorithm in improving the performance of production systems by reducing processing time and energy consumption. These findings have significant implications for the design and optimization of production systems in manufacturing industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温馨家园完成签到 ,获得积分10
22秒前
uo发布了新的文献求助20
26秒前
56秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
uracil97完成签到,获得积分10
1分钟前
1分钟前
1分钟前
幸运小猫发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
方白秋完成签到,获得积分0
2分钟前
温柔冰岚完成签到 ,获得积分10
2分钟前
多啦啦完成签到,获得积分10
2分钟前
2分钟前
奥斯卡完成签到,获得积分0
2分钟前
笑声像鸭子叫完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
奋斗的小研完成签到,获得积分10
3分钟前
fighting发布了新的文献求助10
3分钟前
雨城完成签到 ,获得积分10
3分钟前
fighting发布了新的文献求助10
4分钟前
fighting完成签到,获得积分10
4分钟前
4分钟前
Able完成签到,获得积分10
4分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
幸运小猫完成签到,获得积分10
5分钟前
laohei94_6完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706503
求助须知:如何正确求助?哪些是违规求助? 5174433
关于积分的说明 15246998
捐赠科研通 4859993
什么是DOI,文献DOI怎么找? 2608303
邀请新用户注册赠送积分活动 1559220
关于科研通互助平台的介绍 1517002