Machine Learning Analysis of Microtensile Bond Strength of Dental Adhesives

胶粘剂 计算机科学 人工智能 粘结强度 万能试验机 材料科学 机器学习 算法 极限抗拉强度 复合材料 图层(电子)
作者
Rong Wang,Viviane Hass,Yong Wang
出处
期刊:Journal of Dental Research [SAGE]
卷期号:102 (9): 1022-1030
标识
DOI:10.1177/00220345231175868
摘要

Dental adhesives provide retention to composite fillings in dental restorations. Microtensile bond strength (µTBS) test is the most used laboratory test to evaluate bonding performance of dental adhesives. The traditional approach for developing dental adhesives involves repetitive laboratory measurements, which consumes enormous time and resources. Machine learning (ML) is a promising tool for accelerating this process. This study aimed to develop ML models to predict the µTBS of dental adhesives using their chemical features and to identify important contributing factors for µTBS. Specifically, the chemical composition and µTBS information of 81 dental adhesives were collected from the manufacturers and the literature. The average µTBS value of each adhesive was labeled as either 0 (if <36 MPa) or 1 (if ≥36 MPa) to denote the low and high µTBS classes. The initial 9-feature data set comprised pH, HEMA, BisGMA, UDMA, MDP, PENTA, filler, fluoride, and organic solvent (OS) as input features. Nine ML algorithms, including logistic regression, k-nearest neighbor, support vector machine, decision trees and tree-based ensembles, and multilayer perceptron, were implemented for model development. Feature importance analysis identified MDP, pH, OS, and HEMA as the top 4 contributing features, which were used to construct a 4-feature data set. Grid search with stratified 10-fold cross-validation (CV) was employed for hyperparameter tunning and model performance evaluation using 2 metrics, the area under the receiver operating characteristic curve (AUC) and accuracy. The 4-feature data set generated slightly better performance than the 9-feature data set, with the highest AUC score of 0.90 and accuracy of 0.81 based on stratified CV. In conclusion, ML is an effective tool for predicting dental adhesives with low and high µTBS values and for identifying important chemical features contributing to the µTBS. The ML-based data-driven approach has great potential to accelerate the discovery of new dental adhesives and other dental materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
刚刚
愉快的夏菡完成签到,获得积分10
刚刚
研友_gnv61n完成签到,获得积分10
刚刚
zmy完成签到,获得积分10
刚刚
小蘑菇应助守约采纳,获得10
1秒前
1秒前
空白发布了新的文献求助10
2秒前
buno应助721采纳,获得20
2秒前
石阶上完成签到 ,获得积分10
2秒前
du完成签到 ,获得积分10
2秒前
Xu完成签到,获得积分10
3秒前
mmmm完成签到,获得积分10
3秒前
3秒前
情怀应助YY采纳,获得10
3秒前
懦弱的安珊完成签到,获得积分10
4秒前
Akim应助xiaokezhang采纳,获得10
4秒前
4秒前
柠木完成签到 ,获得积分10
4秒前
系统提示发布了新的文献求助10
4秒前
marigold完成签到,获得积分10
4秒前
Gaoge完成签到,获得积分10
5秒前
愉快的无招完成签到,获得积分10
5秒前
5秒前
HEIKU应助习习采纳,获得10
6秒前
6秒前
6秒前
6秒前
合适苗条完成签到,获得积分10
6秒前
Zn应助开水泡饼采纳,获得10
6秒前
科目三应助Liu采纳,获得10
7秒前
7秒前
eating完成签到,获得积分10
7秒前
李双艳完成签到,获得积分10
7秒前
英姑应助科研混子采纳,获得10
7秒前
li完成签到,获得积分10
8秒前
Hungrylunch应助woshiwuziq采纳,获得20
9秒前
合适苗条发布了新的文献求助10
9秒前
安静听白发布了新的文献求助10
9秒前
krystal发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678