Machine Learning Analysis of Microtensile Bond Strength of Dental Adhesives

胶粘剂 计算机科学 人工智能 粘结强度 万能试验机 材料科学 机器学习 算法 极限抗拉强度 复合材料 图层(电子)
作者
Rong Wang,Viviane Hass,Yong Wang
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:102 (9): 1022-1030 被引量:4
标识
DOI:10.1177/00220345231175868
摘要

Dental adhesives provide retention to composite fillings in dental restorations. Microtensile bond strength (µTBS) test is the most used laboratory test to evaluate bonding performance of dental adhesives. The traditional approach for developing dental adhesives involves repetitive laboratory measurements, which consumes enormous time and resources. Machine learning (ML) is a promising tool for accelerating this process. This study aimed to develop ML models to predict the µTBS of dental adhesives using their chemical features and to identify important contributing factors for µTBS. Specifically, the chemical composition and µTBS information of 81 dental adhesives were collected from the manufacturers and the literature. The average µTBS value of each adhesive was labeled as either 0 (if <36 MPa) or 1 (if ≥36 MPa) to denote the low and high µTBS classes. The initial 9-feature data set comprised pH, HEMA, BisGMA, UDMA, MDP, PENTA, filler, fluoride, and organic solvent (OS) as input features. Nine ML algorithms, including logistic regression, k-nearest neighbor, support vector machine, decision trees and tree-based ensembles, and multilayer perceptron, were implemented for model development. Feature importance analysis identified MDP, pH, OS, and HEMA as the top 4 contributing features, which were used to construct a 4-feature data set. Grid search with stratified 10-fold cross-validation (CV) was employed for hyperparameter tunning and model performance evaluation using 2 metrics, the area under the receiver operating characteristic curve (AUC) and accuracy. The 4-feature data set generated slightly better performance than the 9-feature data set, with the highest AUC score of 0.90 and accuracy of 0.81 based on stratified CV. In conclusion, ML is an effective tool for predicting dental adhesives with low and high µTBS values and for identifying important chemical features contributing to the µTBS. The ML-based data-driven approach has great potential to accelerate the discovery of new dental adhesives and other dental materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扎心应助油炸丸子采纳,获得10
1秒前
茕凡桃七完成签到,获得积分10
1秒前
1秒前
美有姬完成签到,获得积分10
2秒前
2秒前
11发布了新的文献求助10
2秒前
erin发布了新的文献求助10
2秒前
LSH完成签到,获得积分10
2秒前
3秒前
寂寞的迎天完成签到,获得积分10
3秒前
3秒前
小红完成签到,获得积分10
3秒前
3秒前
拓跋忆霜完成签到,获得积分10
4秒前
wangjie发布了新的文献求助10
4秒前
smzzz发布了新的文献求助10
5秒前
Tender完成签到,获得积分10
5秒前
july发布了新的文献求助10
5秒前
孤独的巨人完成签到,获得积分10
6秒前
6秒前
猪猪hero发布了新的文献求助10
7秒前
丹妮发布了新的文献求助80
7秒前
黎星完成签到,获得积分10
8秒前
11关闭了11文献求助
9秒前
风中的老九完成签到,获得积分10
9秒前
10秒前
____发布了新的文献求助10
10秒前
11秒前
ding应助宇与鱼采纳,获得10
12秒前
ydd完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
安静友灵发布了新的文献求助10
14秒前
14秒前
夕照古风发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
麦芽糖完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751