Machine Learning Analysis of Microtensile Bond Strength of Dental Adhesives

胶粘剂 计算机科学 人工智能 粘结强度 万能试验机 材料科学 机器学习 算法 极限抗拉强度 复合材料 图层(电子)
作者
R Wang,Viviane Hass,Yong Wang
出处
期刊:Journal of Dental Research [SAGE]
卷期号:102 (9): 1022-1030
标识
DOI:10.1177/00220345231175868
摘要

Dental adhesives provide retention to composite fillings in dental restorations. Microtensile bond strength (µTBS) test is the most used laboratory test to evaluate bonding performance of dental adhesives. The traditional approach for developing dental adhesives involves repetitive laboratory measurements, which consumes enormous time and resources. Machine learning (ML) is a promising tool for accelerating this process. This study aimed to develop ML models to predict the µTBS of dental adhesives using their chemical features and to identify important contributing factors for µTBS. Specifically, the chemical composition and µTBS information of 81 dental adhesives were collected from the manufacturers and the literature. The average µTBS value of each adhesive was labeled as either 0 (if <36 MPa) or 1 (if ≥36 MPa) to denote the low and high µTBS classes. The initial 9-feature data set comprised pH, HEMA, BisGMA, UDMA, MDP, PENTA, filler, fluoride, and organic solvent (OS) as input features. Nine ML algorithms, including logistic regression, k-nearest neighbor, support vector machine, decision trees and tree-based ensembles, and multilayer perceptron, were implemented for model development. Feature importance analysis identified MDP, pH, OS, and HEMA as the top 4 contributing features, which were used to construct a 4-feature data set. Grid search with stratified 10-fold cross-validation (CV) was employed for hyperparameter tunning and model performance evaluation using 2 metrics, the area under the receiver operating characteristic curve (AUC) and accuracy. The 4-feature data set generated slightly better performance than the 9-feature data set, with the highest AUC score of 0.90 and accuracy of 0.81 based on stratified CV. In conclusion, ML is an effective tool for predicting dental adhesives with low and high µTBS values and for identifying important chemical features contributing to the µTBS. The ML-based data-driven approach has great potential to accelerate the discovery of new dental adhesives and other dental materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
薰硝壤应助寂寞的寒风采纳,获得10
4秒前
猪皮king完成签到,获得积分10
4秒前
4秒前
陈晶完成签到 ,获得积分10
4秒前
蚂蚁完成签到 ,获得积分10
5秒前
单薄的忆枫完成签到,获得积分10
6秒前
6秒前
爆米花应助将将采纳,获得10
6秒前
6秒前
景Q同学发布了新的文献求助10
8秒前
wzh发布了新的文献求助10
10秒前
11秒前
科研通AI2S应助十二采纳,获得10
11秒前
大帅完成签到 ,获得积分10
12秒前
英姑应助傻子与白痴采纳,获得10
13秒前
称心的晓筠完成签到,获得积分10
14秒前
阿腾发布了新的文献求助10
14秒前
洋芋儿完成签到,获得积分10
14秒前
14秒前
zz发布了新的文献求助30
15秒前
15秒前
15秒前
小二郎应助合适依秋采纳,获得10
16秒前
美女完成签到 ,获得积分10
16秒前
柠檬要加冰完成签到 ,获得积分10
16秒前
17秒前
20秒前
小凉发布了新的文献求助10
20秒前
21秒前
温暖芸发布了新的文献求助10
22秒前
易安发布了新的文献求助100
22秒前
22秒前
22秒前
寂寞的寒风完成签到,获得积分10
22秒前
22秒前
24秒前
25秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226