Earthquake Damage Prediction and Rapid Assessment of Building Damage Using Deep Learning

卷积神经网络 计算机科学 深度学习 分类 人工智能 机器学习 地震预报 自然灾害 特征(语言学) 人工神经网络 数据挖掘 地质学 地震学 语言学 海洋学 哲学
作者
Yuvaraj Natarajan,Gitanjali Wadhwa,Preethi Akshaya Ranganathan,Karthika Natarajan
标识
DOI:10.1109/icaecis58353.2023.10169947
摘要

One of the most expensive natural disasters that affect people, earthquakes occur suddenly. As a result, earthquake prediction has grown in importance and difficulty for humanity. Although numerous existing approaches attempt to handle this problem, the majority rely on seismic indicators created by geologists or feature vectors extracted by the deep learning techniques to describe an earthquake for the earthquake prediction. Combining these two categories of characteristics to enhance ultimate Earthquake prediction performance is still a challenge. In order to achieve this, we put forth a deep learning model that successfully fuses explicit and implicit information for earthquake prediction. Here, we use a Convolutional Neural Network to extract implicit features while using eight precursory pattern-based indicators as the explicit features. After that, an attention-based approach is suggested to effectively combine these two categories of traits. A dynamic loss function is the additionally created to address the imbalance of category in seismic data. On a test picture dataset, the performances of multiple CNN models are contrasted. In order to classify earthquake damage, the model is further developed as a web application. Damage assessment values, which are determined using the Convolutional Neural Network model and gradient-weighted class activation mappings, are used to determine the extent of the damage. The web-based program can efficiently and automatically categorize earthquake-related structural damage, making it appropriate for decision-making in emergency response, resource allocation, and policy formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助Lice采纳,获得10
刚刚
YingjiaHu完成签到,获得积分10
刚刚
徐徐完成签到,获得积分10
刚刚
1秒前
zhang完成签到,获得积分20
1秒前
星沐影发布了新的文献求助10
2秒前
田様应助小眼儿采纳,获得10
3秒前
lii应助我先睡了采纳,获得10
4秒前
4秒前
zhang发布了新的文献求助10
6秒前
6秒前
大模型应助专一的凛采纳,获得10
7秒前
7秒前
8秒前
aaaaaa发布了新的文献求助10
9秒前
9秒前
展希希发布了新的文献求助20
10秒前
hahhh7完成签到,获得积分10
11秒前
johnny发布了新的文献求助10
11秒前
11秒前
许子健完成签到,获得积分10
12秒前
小眼儿发布了新的文献求助10
14秒前
脑洞疼应助aaaaaa采纳,获得10
15秒前
15秒前
Bryan应助热心小松鼠采纳,获得10
16秒前
unless完成签到,获得积分10
16秒前
冬去春来发布了新的文献求助10
17秒前
俭朴的小熊猫完成签到,获得积分10
17秒前
勤勤的新星完成签到,获得积分10
17秒前
传统的斓完成签到,获得积分10
17秒前
johnny完成签到,获得积分10
18秒前
yan发布了新的文献求助10
18秒前
22秒前
scc完成签到,获得积分10
24秒前
科研通AI2S应助热心小松鼠采纳,获得10
24秒前
东木应助热心小松鼠采纳,获得30
24秒前
Bryan应助热心小松鼠采纳,获得10
24秒前
Bryan应助热心小松鼠采纳,获得10
24秒前
JHHHH完成签到,获得积分10
25秒前
佳佳应助坚强谷槐采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432