Earthquake Damage Prediction and Rapid Assessment of Building Damage Using Deep Learning

卷积神经网络 计算机科学 深度学习 分类 人工智能 机器学习 地震预报 自然灾害 特征(语言学) 人工神经网络 数据挖掘 地质学 地震学 语言学 海洋学 哲学
作者
Yuvaraj Natarajan,Gitanjali Wadhwa,Preethi Akshaya Ranganathan,Karthika Natarajan
标识
DOI:10.1109/icaecis58353.2023.10169947
摘要

One of the most expensive natural disasters that affect people, earthquakes occur suddenly. As a result, earthquake prediction has grown in importance and difficulty for humanity. Although numerous existing approaches attempt to handle this problem, the majority rely on seismic indicators created by geologists or feature vectors extracted by the deep learning techniques to describe an earthquake for the earthquake prediction. Combining these two categories of characteristics to enhance ultimate Earthquake prediction performance is still a challenge. In order to achieve this, we put forth a deep learning model that successfully fuses explicit and implicit information for earthquake prediction. Here, we use a Convolutional Neural Network to extract implicit features while using eight precursory pattern-based indicators as the explicit features. After that, an attention-based approach is suggested to effectively combine these two categories of traits. A dynamic loss function is the additionally created to address the imbalance of category in seismic data. On a test picture dataset, the performances of multiple CNN models are contrasted. In order to classify earthquake damage, the model is further developed as a web application. Damage assessment values, which are determined using the Convolutional Neural Network model and gradient-weighted class activation mappings, are used to determine the extent of the damage. The web-based program can efficiently and automatically categorize earthquake-related structural damage, making it appropriate for decision-making in emergency response, resource allocation, and policy formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心易真完成签到 ,获得积分10
1秒前
hbhbj应助hkh采纳,获得10
2秒前
hbhbj应助hkh采纳,获得10
2秒前
hbhbj应助hkh采纳,获得10
2秒前
2秒前
6秒前
6秒前
大大彬完成签到 ,获得积分10
7秒前
han发布了新的文献求助10
7秒前
8秒前
Stride应助桃子牛肉酱采纳,获得10
8秒前
乐乐应助平硕采纳,获得10
9秒前
zzz完成签到 ,获得积分10
9秒前
刚得力完成签到,获得积分10
9秒前
chu完成签到,获得积分10
11秒前
精明觅荷发布了新的文献求助10
13秒前
mufulee完成签到,获得积分10
14秒前
冇_完成签到 ,获得积分10
14秒前
luoshi完成签到,获得积分10
16秒前
lee完成签到,获得积分10
17秒前
18秒前
FashionBoy应助chu采纳,获得10
18秒前
18秒前
19秒前
大胖小子完成签到,获得积分10
19秒前
Albert完成签到,获得积分10
20秒前
科研通AI2S应助AR采纳,获得10
22秒前
23秒前
doa发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
程大学完成签到,获得积分10
23秒前
NanFeng发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
程大学发布了新的文献求助30
26秒前
善良寒荷发布了新的文献求助10
28秒前
28秒前
奥利奥完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911940
求助须知:如何正确求助?哪些是违规求助? 4187232
关于积分的说明 13003449
捐赠科研通 3955200
什么是DOI,文献DOI怎么找? 2168624
邀请新用户注册赠送积分活动 1187094
关于科研通互助平台的介绍 1094340