计算机科学
面部识别系统
水准点(测量)
面子(社会学概念)
人工智能
变压器
GSM演进的增强数据速率
边缘设备
模式识别(心理学)
建筑
软件部署
工程类
云计算
艺术
社会科学
大地测量学
电压
社会学
电气工程
视觉艺术
地理
操作系统
作者
Anjith George,Christophe Ecabert,Hatef Otroshi Shahreza,Ketan Kotwal,Sébastien Marcel
出处
期刊:Cornell University - arXiv
日期:2023-07-04
标识
DOI:10.48550/arxiv.2307.01838
摘要
In this paper, we present EdgeFace, a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.
科研通智能强力驱动
Strongly Powered by AbleSci AI