Enhancing Robot Calibration Through Reliable High-Order Hermite Polynomials Model and SSA-BP Optimization

机器人校准 校准 机器人 工业机器人 运动学 粒子群优化 计算机科学 控制理论(社会学) 算法 机器人运动学 模拟 人工智能 数学 移动机器人 统计 经典力学 物理 控制(管理)
作者
Yujie Zhang,Qi Fang,Yi Xie,Weijie Zhang,Yu Ru
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (2)
标识
DOI:10.1115/1.4063035
摘要

Abstract Various sources of error can lead to the position accuracy of the robot being orders of magnitude worse than its repeatability. For the accuracy of drilling in the aviation field, high-precision assembly, and other areas depending on the industrial robot’s absolute positioning accuracy, it is essential to improve the accuracy of absolute positioning through calibration. In this paper, an error model of the robot considering both constant and high-order joint-dependent kinematic errors is established, and the model is modified by the Hermite polynomial, thereby mitigating the occurrence of the Runge phenomenon. To identify high-order joint-dependent kinematic errors, a robot calibration method based on the back-propagation neural network (BP) optimized by the sparrow search algorithm (SSA-BP) is proposed, which optimizes the uncertainty of weights and thresholds in the BP algorithm. Experiments on an EFORT ECR5 robot were implemented to validate the efficiency of the proposed method. The positioning error is reduced from 3.1704 mm to 0.2798 mm, and the error decrease rate reaches 42.92% (compared with BP calibration) and 21.09% (compared with particle swarm optimization back-propagation calibration). With the new calibration method using SSA-BP, robot positioning errors can be effectively compensated for, and the robot positioning accuracy can be improved significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
niNe3YUE应助科研通管家采纳,获得10
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
Hezhiyong完成签到,获得积分10
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助charles采纳,获得10
1秒前
直率小霜发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
守护完成签到,获得积分10
1秒前
冷艳的班应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
AN应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
NexusExplorer应助科研不算楠采纳,获得10
2秒前
墨月白完成签到,获得积分10
2秒前
2秒前
冷酷的芷容完成签到,获得积分10
2秒前
樱桃发布了新的文献求助10
2秒前
111发布了新的文献求助10
2秒前
冷傲汽车发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
13633501455发布了新的文献求助20
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791