Transcending Pixels: Boosting Saliency Detection via Scene Understanding from Aerial Imagery

计算机科学 人工智能 突出 计算机视觉 目标检测 子网 像素 Boosting(机器学习) 模式识别(心理学) 计算机网络
作者
Yanfeng Liu,Zhitong Xiong,Yuan Yuan,Qi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:23
标识
DOI:10.1109/tgrs.2023.3298661
摘要

Existing remote sensing image salient object detection (RSI-SOD) methods widely perform object-level semantic understanding with pixel-level supervision, but ignore the image-level scene information. As a fundamental attribute of RSIs, the scene has a complex intrinsic correlation with salient objects, which may bring hints to improve saliency detection performance. However, existing RSI-SOD datasets lack both pixel- and image-level labels, and it is non-trivial to effectively transfer the scene domain knowledge for more accurate saliency localization. To address these challenges, we first annotate the image-level scene labels of three RSI-SOD datasets inspired by remote sensing scene classification. On top of it, we present a novel scene-guided dual-stream network (SDNet), which can perform cross-task knowledge distillation from the scene classification to facilitate accurate saliency detection. Specifically, a scene knowledge transfer module (SKTM) and a conditional dynamic guidance module (CDGM) are designed for extracting saliency key area as spatial attention from the scene subnet and guiding the saliency subnet to generate scene-enhanced saliency features, respectively. Finally, an object contour awareness module (OCAM) is introduced to enable the model to focus more on irregular spatial details of salient objects from the complicated background. Extensive experiments reveal that our SDNet outperforms over 20 state-of-the-art algorithms on three datasets. Moreover, we prove that the proposed framework is model-agnostic, and its extension to six baselines can bring significant performance benefits. Code will be available at https://github.com/lyf0801/SDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiFeiYu完成签到,获得积分10
刚刚
1秒前
laura完成签到,获得积分10
1秒前
wanci应助孙军涛采纳,获得10
1秒前
嘿嘿嘿发布了新的文献求助10
2秒前
快乐尔蝶完成签到 ,获得积分10
2秒前
tomatototo完成签到,获得积分10
2秒前
3秒前
充电宝应助caosheng采纳,获得30
3秒前
ting发布了新的文献求助10
3秒前
wddsf完成签到,获得积分10
3秒前
zzx完成签到,获得积分10
6秒前
虚拟小号发布了新的文献求助10
7秒前
bkagyin应助tomatototo采纳,获得30
8秒前
汉堡包应助爱学习的曼卉采纳,获得10
8秒前
gu完成签到 ,获得积分10
9秒前
10秒前
10秒前
虚拟小号完成签到,获得积分10
12秒前
Tian发布了新的文献求助30
13秒前
13秒前
Chillym完成签到 ,获得积分10
15秒前
鸣笛应助无语采纳,获得20
16秒前
L同学发布了新的文献求助10
16秒前
李靖完成签到 ,获得积分10
16秒前
17秒前
香飘飘完成签到,获得积分10
18秒前
18秒前
联合国ffc完成签到 ,获得积分10
18秒前
深情安青应助权志龙采纳,获得10
19秒前
19秒前
小虎牙发布了新的文献求助10
19秒前
Rondab应助zhuxd采纳,获得10
20秒前
20秒前
范啦啦啦发布了新的文献求助10
20秒前
脑洞疼应助以前采纳,获得10
21秒前
务实青筠发布了新的文献求助10
21秒前
22秒前
嘿嘿嘿完成签到,获得积分20
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513