Transcending Pixels: Boosting Saliency Detection via Scene Understanding From Aerial Imagery

计算机科学 人工智能 突出 计算机视觉 目标检测 子网 像素 Boosting(机器学习) 模式识别(心理学) 计算机网络
作者
Yanfeng Liu,Zhitong Xiong,Yuan Yuan,Qi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:37
标识
DOI:10.1109/tgrs.2023.3298661
摘要

Existing remote sensing image salient object detection (RSI-SOD) methods widely perform object-level semantic understanding with pixel-level supervision, but ignore the image-level scene information. As a fundamental attribute of RSIs, the scene has a complex intrinsic correlation with salient objects, which may bring hints to improve saliency detection performance. However, existing RSI-SOD datasets lack both pixel- and image-level labels, and it is non-trivial to effectively transfer the scene domain knowledge for more accurate saliency localization. To address these challenges, we first annotate the image-level scene labels of three RSI-SOD datasets inspired by remote sensing scene classification. On top of it, we present a novel scene-guided dual-stream network (SDNet), which can perform cross-task knowledge distillation from the scene classification to facilitate accurate saliency detection. Specifically, a scene knowledge transfer module (SKTM) and a conditional dynamic guidance module (CDGM) are designed for extracting saliency key area as spatial attention from the scene subnet and guiding the saliency subnet to generate scene-enhanced saliency features, respectively. Finally, an object contour awareness module (OCAM) is introduced to enable the model to focus more on irregular spatial details of salient objects from the complicated background. Extensive experiments reveal that our SDNet outperforms over 20 state-of-the-art algorithms on three datasets. Moreover, we prove that the proposed framework is model-agnostic, and its extension to six baselines can bring significant performance benefits. Code will be available at https://github.com/lyf0801/SDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎奈发布了新的文献求助10
1秒前
毛毛发布了新的文献求助10
1秒前
Lin应助tjj采纳,获得10
1秒前
2秒前
2秒前
CH发布了新的文献求助10
2秒前
wangh完成签到,获得积分10
3秒前
4秒前
彼方250521发布了新的文献求助10
4秒前
4秒前
4秒前
旷野完成签到,获得积分20
4秒前
沉静的小熊猫完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
旷野发布了新的文献求助10
7秒前
Hello应助沐沐采纳,获得10
7秒前
7秒前
9秒前
科研通AI2S应助123采纳,获得30
10秒前
哎嘿发布了新的文献求助10
10秒前
隐形曼青应助naturehome采纳,获得10
10秒前
清爽白开水完成签到 ,获得积分10
10秒前
完美世界应助多情紫南采纳,获得10
10秒前
NexusExplorer应助多情紫南采纳,获得10
11秒前
张凌发布了新的文献求助10
11秒前
11秒前
cxzhao发布了新的文献求助10
11秒前
沐泽发布了新的文献求助10
12秒前
王珂发布了新的文献求助10
14秒前
boyagao发布了新的文献求助30
14秒前
脱壳金蝉完成签到,获得积分10
15秒前
17秒前
ZCY发布了新的文献求助10
17秒前
彼方250521完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572695
求助须知:如何正确求助?哪些是违规求助? 4658592
关于积分的说明 14722423
捐赠科研通 4598545
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494533
关于科研通互助平台的介绍 1464586