Prediction of Wind Turbine Blades Icing Based on CJBM With Imbalanced Data

结冰 聚类分析 Boosting(机器学习) 过采样 人工智能 算法 风洞 SCADA系统 机器学习 计算机科学 数学 数据挖掘 工程类 物理 航空航天工程 气象学 电气工程 带宽(计算) 计算机网络
作者
Sai Li,Yanfeng Peng,Guangfu Bin
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19726-19736 被引量:17
标识
DOI:10.1109/jsen.2023.3296086
摘要

Supervisory control and data acquisition (SCADA) is widely used in wind farms as an effective data acquisition system for wind turbines (WTs). However, in practical engineering applications, it is difficult for us to have adequate conditions to collect enough WT blade icing data, which leads to data imbalance and uneven distribution in the feature space. Using the classical synthetic minority oversampling technique (SMOTE) to balance the data may increase the overlap of positive and negative samples, or produce some redundant samples without useful information. A center jumping boosting machine (CJBM) method is proposed that combines an improved clustering-based oversampling (γ mini density peaks clustering SMOTE, γMiniDPC-SMOTE) and light gradient boosting machine (LightGBM) for blade icing prediction. First, to solve the problem of imbalanced and uneven distribution of WT data, a ${\gamma }$ MiniDPC-SMOTE method is proposed, which divides icing samples into multiple clusters, then increases icing samples, and alleviates uneven distribution in feature space. Second, calculating the intercept distance ${d}_{c}$ based on the binary search method and the adaptive selection of DPC parameters based on the step phenomenon of $\gamma $ parameters and verified by $\gamma $ -step of two WT icing data are proposed. Then, for the problem of low operating efficiency of the model under a large amount of imbalanced data, LightGBM is used for model training and icing prediction. Finally, validation was performed on two SCADA datasets. The results showed that the accuracy, precision, recall, F1-measure, and running times increased significantly, proving the superiority of the CJBM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心黑夜发布了新的文献求助10
刚刚
1秒前
1秒前
Sonny完成签到,获得积分10
1秒前
sunflower完成签到,获得积分0
3秒前
3秒前
学学术术小小白白完成签到,获得积分10
3秒前
布丁完成签到,获得积分10
3秒前
距破之舞完成签到,获得积分10
3秒前
3秒前
SongWhizz发布了新的文献求助10
4秒前
大模型应助布衣采纳,获得10
5秒前
Sonny发布了新的文献求助10
5秒前
Kristin完成签到,获得积分10
5秒前
mmm驳回了bkagyin应助
7秒前
量子星尘发布了新的文献求助10
8秒前
HeyU发布了新的文献求助10
8秒前
小倒霉蛋完成签到 ,获得积分10
8秒前
8秒前
8秒前
emilybei发布了新的文献求助10
9秒前
科研通AI6应助larychen采纳,获得10
9秒前
10秒前
畅快的寻凝完成签到,获得积分10
11秒前
lin发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
领导范儿应助诚心黑夜采纳,获得10
14秒前
14秒前
TommyLeo关注了科研通微信公众号
15秒前
hh完成签到,获得积分10
15秒前
Sonny发布了新的文献求助10
15秒前
大哥爱发文章完成签到,获得积分10
16秒前
17秒前
可爱的函函应助larychen采纳,获得10
17秒前
依依发布了新的文献求助10
18秒前
18秒前
咩咩羊发布了新的文献求助10
18秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830