重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Prediction of Wind Turbine Blades Icing Based on CJBM With Imbalanced Data

结冰 聚类分析 Boosting(机器学习) 过采样 人工智能 算法 风洞 SCADA系统 机器学习 计算机科学 数学 数据挖掘 工程类 物理 航空航天工程 气象学 计算机网络 带宽(计算) 电气工程
作者
Sai Li,Yanfeng Peng,Guangfu Bin
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19726-19736 被引量:17
标识
DOI:10.1109/jsen.2023.3296086
摘要

Supervisory control and data acquisition (SCADA) is widely used in wind farms as an effective data acquisition system for wind turbines (WTs). However, in practical engineering applications, it is difficult for us to have adequate conditions to collect enough WT blade icing data, which leads to data imbalance and uneven distribution in the feature space. Using the classical synthetic minority oversampling technique (SMOTE) to balance the data may increase the overlap of positive and negative samples, or produce some redundant samples without useful information. A center jumping boosting machine (CJBM) method is proposed that combines an improved clustering-based oversampling (γ mini density peaks clustering SMOTE, γMiniDPC-SMOTE) and light gradient boosting machine (LightGBM) for blade icing prediction. First, to solve the problem of imbalanced and uneven distribution of WT data, a ${\gamma }$ MiniDPC-SMOTE method is proposed, which divides icing samples into multiple clusters, then increases icing samples, and alleviates uneven distribution in feature space. Second, calculating the intercept distance ${d}_{c}$ based on the binary search method and the adaptive selection of DPC parameters based on the step phenomenon of $\gamma $ parameters and verified by $\gamma $ -step of two WT icing data are proposed. Then, for the problem of low operating efficiency of the model under a large amount of imbalanced data, LightGBM is used for model training and icing prediction. Finally, validation was performed on two SCADA datasets. The results showed that the accuracy, precision, recall, F1-measure, and running times increased significantly, proving the superiority of the CJBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PINO完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
DrWho发布了新的文献求助10
刚刚
wwwwww发布了新的文献求助10
1秒前
1秒前
加菲丰丰应助悦耳冰萍采纳,获得60
1秒前
浮游应助Seven采纳,获得20
1秒前
2秒前
jz发布了新的文献求助10
2秒前
2秒前
爆米花应助无限绮南采纳,获得10
2秒前
Song发布了新的文献求助30
2秒前
脑洞疼应助dfsdf采纳,获得10
2秒前
Owen应助璐璇采纳,获得10
3秒前
suns完成签到,获得积分10
3秒前
abb先生发布了新的文献求助150
3秒前
随随完成签到 ,获得积分10
3秒前
4秒前
5秒前
Eve发布了新的文献求助10
5秒前
5秒前
蒋庆完成签到,获得积分10
5秒前
Zx_1993应助FLZLC采纳,获得20
5秒前
缓慢迎波完成签到,获得积分10
6秒前
Orange应助可靠月亮采纳,获得10
6秒前
7秒前
鳗鱼雨寒完成签到,获得积分20
7秒前
7秒前
大胆诗云完成签到,获得积分10
8秒前
纯情的无剑完成签到,获得积分10
8秒前
9秒前
砚草难书完成签到,获得积分10
9秒前
共享精神应助可耐的芙蓉采纳,获得10
9秒前
10秒前
小龟完成签到 ,获得积分10
10秒前
10秒前
10秒前
冰糖雪梨完成签到 ,获得积分10
11秒前
962950735发布了新的文献求助10
11秒前
1234567发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567