已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Wind Turbine Blades Icing Based on CJBM With Imbalanced Data

结冰 聚类分析 Boosting(机器学习) 过采样 人工智能 算法 风洞 SCADA系统 机器学习 计算机科学 数学 数据挖掘 工程类 物理 航空航天工程 气象学 计算机网络 带宽(计算) 电气工程
作者
Sai Li,Yanfeng Peng,Guangfu Bin
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (17): 19726-19736 被引量:17
标识
DOI:10.1109/jsen.2023.3296086
摘要

Supervisory control and data acquisition (SCADA) is widely used in wind farms as an effective data acquisition system for wind turbines (WTs). However, in practical engineering applications, it is difficult for us to have adequate conditions to collect enough WT blade icing data, which leads to data imbalance and uneven distribution in the feature space. Using the classical synthetic minority oversampling technique (SMOTE) to balance the data may increase the overlap of positive and negative samples, or produce some redundant samples without useful information. A center jumping boosting machine (CJBM) method is proposed that combines an improved clustering-based oversampling (γ mini density peaks clustering SMOTE, γMiniDPC-SMOTE) and light gradient boosting machine (LightGBM) for blade icing prediction. First, to solve the problem of imbalanced and uneven distribution of WT data, a ${\gamma }$ MiniDPC-SMOTE method is proposed, which divides icing samples into multiple clusters, then increases icing samples, and alleviates uneven distribution in feature space. Second, calculating the intercept distance ${d}_{c}$ based on the binary search method and the adaptive selection of DPC parameters based on the step phenomenon of $\gamma $ parameters and verified by $\gamma $ -step of two WT icing data are proposed. Then, for the problem of low operating efficiency of the model under a large amount of imbalanced data, LightGBM is used for model training and icing prediction. Finally, validation was performed on two SCADA datasets. The results showed that the accuracy, precision, recall, F1-measure, and running times increased significantly, proving the superiority of the CJBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei完成签到,获得积分20
3秒前
4秒前
5秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助王诗瑶采纳,获得10
9秒前
9秒前
augenstern发布了新的文献求助10
9秒前
dtf完成签到,获得积分10
10秒前
小底发布了新的文献求助10
10秒前
慌慌完成签到 ,获得积分10
11秒前
JIAO完成签到,获得积分10
12秒前
常清华发布了新的文献求助10
13秒前
16秒前
17秒前
小底完成签到,获得积分10
17秒前
17秒前
doriseqin完成签到,获得积分10
18秒前
酷波er应助Chen采纳,获得10
19秒前
春和景明完成签到,获得积分10
19秒前
fang发布了新的文献求助10
21秒前
Eve发布了新的文献求助10
22秒前
23秒前
YaGue发布了新的文献求助10
23秒前
LL来了完成签到 ,获得积分10
23秒前
阳光问安完成签到 ,获得积分10
24秒前
29秒前
YaGue完成签到,获得积分10
30秒前
歪歪扣叉发布了新的文献求助10
30秒前
何rj发布了新的文献求助10
33秒前
ding应助zengyiyong采纳,获得20
35秒前
科研通AI5应助愤怒的无敌采纳,获得10
38秒前
隐形曼青应助常清华采纳,获得10
38秒前
38秒前
顾建瑜完成签到,获得积分10
38秒前
39秒前
玲儿完成签到,获得积分10
40秒前
40秒前
仁爱的秀珍菇完成签到,获得积分10
40秒前
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733271
求助须知:如何正确求助?哪些是违规求助? 3277434
关于积分的说明 10002612
捐赠科研通 2993338
什么是DOI,文献DOI怎么找? 1642645
邀请新用户注册赠送积分活动 780555
科研通“疑难数据库(出版商)”最低求助积分说明 748892