How Does Self-Compassion Interact with Depression and Anxiety Among Old People?: Evidence from Cross-Lagged Panel Network Analysis

焦虑 自怜 心理学 面板分析 萧条(经济学) 面板数据 同情 临床心理学 精神科 经济 计量经济学 注意 政治学 宏观经济学 法学
作者
Jingyuan Huang,Tong Xie,Wei Xu
标识
DOI:10.2139/ssrn.4500197
摘要

Background: Self-compassion has gained researchers’ attention in recent years, yet up to now there is no evidence concerning how the six different components of self-compassion interact with mental health, such as depression and anxiety in older people. The network analysis provided approaches to investigate such detailed associations among those variables in a more meticulous way. The current study aimed to model a cross-lagged network of components of self-compassion, depression and anxiety with longitudinal data to unveil their temporal relationships among seniors.Methods: A sample of 345 community-dwelling elderly individuals (mean age = 83.81, 44.9% male) in Nanjing, China were assessed with the Self-compassion Scale and Depression, Anxiety, and Stress Scale-21 three times with an interval of 6 months in between. Two cross-lagged panel networks were examined to model the temporal associations among elements of self-compassion, depression and anxiety.Results: The T1-T2 Network yielded 2 notable cross-lagged edges while the T2-T3 Network yielded 5 notable edges. Centrality analysis identified depression to be the most influential in both networks, while common humanity and over-identification showed a high inclination of both influencing and being influenced by other variables in the two networks.Conclusions: The study provided some evidence for the tendency for these elements of self-compassion to covary, but also found an unusually positive relationship between the positive part of self-compassion and anxiety, highlighting the necessity of future studies to replicate those relationships. The high influence of depression in the two networks and the complicated role of common humanity and over-identification also need further exploration into their mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助lisa采纳,获得10
刚刚
秋雨发布了新的文献求助10
3秒前
Crazy_Runner发布了新的文献求助30
5秒前
CodeCraft应助怡然冷梅采纳,获得10
7秒前
加肥猫1992完成签到 ,获得积分10
7秒前
charcy完成签到,获得积分10
8秒前
8秒前
纯真的诗兰完成签到,获得积分10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
吡啶应助脸小呆呆采纳,获得10
17秒前
科目三应助xiaoxiaojiang采纳,获得10
18秒前
20秒前
落寞剑成发布了新的文献求助10
24秒前
24秒前
26秒前
yz完成签到,获得积分10
29秒前
29秒前
SG发布了新的文献求助10
30秒前
吡啶应助脸小呆呆采纳,获得10
31秒前
34秒前
Phosphene应助三二采纳,获得10
34秒前
Jasper应助SOPHIA采纳,获得10
35秒前
闪闪小玉发布了新的文献求助10
37秒前
Jing完成签到 ,获得积分10
37秒前
英俊的铭应助煤炭不甜采纳,获得10
41秒前
curtisness应助yz采纳,获得10
43秒前
李骁完成签到 ,获得积分10
44秒前
44秒前
44秒前
JSDYCH应助煤炭不甜采纳,获得10
45秒前
朴素海亦完成签到 ,获得积分10
46秒前
希望天下0贩的0应助饼饼采纳,获得10
47秒前
zhaoqiang发布了新的文献求助10
48秒前
49秒前
务实青筠完成签到 ,获得积分10
49秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348832
求助须知:如何正确求助?哪些是违规求助? 2975106
关于积分的说明 8667405
捐赠科研通 2655816
什么是DOI,文献DOI怎么找? 1454209
科研通“疑难数据库(出版商)”最低求助积分说明 673253
邀请新用户注册赠送积分活动 663680