How Does Self-Compassion Interact with Depression and Anxiety Among Old People?: Evidence from Cross-Lagged Panel Network Analysis

焦虑 自怜 心理学 面板分析 萧条(经济学) 面板数据 同情 临床心理学 精神科 经济 计量经济学 注意 政治学 宏观经济学 法学
作者
Jingyuan Huang,Tong Xie,Wei Xu
标识
DOI:10.2139/ssrn.4500197
摘要

Background: Self-compassion has gained researchers’ attention in recent years, yet up to now there is no evidence concerning how the six different components of self-compassion interact with mental health, such as depression and anxiety in older people. The network analysis provided approaches to investigate such detailed associations among those variables in a more meticulous way. The current study aimed to model a cross-lagged network of components of self-compassion, depression and anxiety with longitudinal data to unveil their temporal relationships among seniors.Methods: A sample of 345 community-dwelling elderly individuals (mean age = 83.81, 44.9% male) in Nanjing, China were assessed with the Self-compassion Scale and Depression, Anxiety, and Stress Scale-21 three times with an interval of 6 months in between. Two cross-lagged panel networks were examined to model the temporal associations among elements of self-compassion, depression and anxiety.Results: The T1-T2 Network yielded 2 notable cross-lagged edges while the T2-T3 Network yielded 5 notable edges. Centrality analysis identified depression to be the most influential in both networks, while common humanity and over-identification showed a high inclination of both influencing and being influenced by other variables in the two networks.Conclusions: The study provided some evidence for the tendency for these elements of self-compassion to covary, but also found an unusually positive relationship between the positive part of self-compassion and anxiety, highlighting the necessity of future studies to replicate those relationships. The high influence of depression in the two networks and the complicated role of common humanity and over-identification also need further exploration into their mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
震动的醉易完成签到,获得积分10
刚刚
1秒前
cbx发布了新的文献求助50
1秒前
Hello应助南宫白竹采纳,获得10
2秒前
垃圾砂糖乙女牛永贵完成签到,获得积分10
2秒前
三三发布了新的文献求助10
2秒前
zhang完成签到,获得积分10
3秒前
YifanWang应助酷bile采纳,获得10
3秒前
AUGS酒发布了新的文献求助10
3秒前
杨lei完成签到,获得积分10
4秒前
5秒前
5秒前
哈哈哈完成签到 ,获得积分10
5秒前
6秒前
曹琳发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
久念发布了新的文献求助10
8秒前
悦耳难摧发布了新的文献求助10
8秒前
可爱的函函应助Arthur采纳,获得10
8秒前
JamesPei应助vivi猫小咪采纳,获得10
9秒前
共享精神应助独特的高山采纳,获得10
9秒前
maxine完成签到,获得积分10
9秒前
zhegewa完成签到,获得积分10
9秒前
9秒前
SciGPT应助三三采纳,获得10
10秒前
Jasper应助狄鹤轩采纳,获得10
10秒前
廖思巧完成签到,获得积分20
10秒前
11秒前
11秒前
jie酱拌面应助南宫白竹采纳,获得10
11秒前
昼夜本色发布了新的文献求助10
12秒前
zhegewa发布了新的文献求助10
12秒前
独特的鱼完成签到,获得积分10
12秒前
12秒前
完美世界应助飘逸的又夏采纳,获得10
13秒前
清墨发布了新的文献求助30
14秒前
Halo发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058