A Machine Learning-assisted Hybrid Model to Predict Ribbon Solid Fraction, Granule Size Distribution and Throughput in a Dry Granulation Process

丝带 造粒 颗粒(地质) 材料科学 威布尔分布 工艺工程 压实 生物系统 复合材料 数学 工程类 统计 生物
作者
Yan-Shu Huang,David Sixon,Phoebe Bailey,Rexonni B. Lagare,Marcial Gonzalez,Zoltán K. Nagy,Gintaras V. Reklaitis
出处
期刊:Computer-aided chemical engineering 卷期号:: 813-818 被引量:3
标识
DOI:10.1016/b978-0-443-15274-0.50130-x
摘要

A quantitative model can play an essential role in controlling critical quality attributes of products and in designing the associated processes. One of the challenges in designing a dry granulation process is to find the optimal balance between improving powder flowability and sacrificing powder tabletability, both of which are highly affected by ribbon solid fraction and granule size distribution (GSD). This study is focused on developing a hybrid machine learning (ML)-assisted mechanistic model to predict ribbon solid fraction, GSD, and throughput for the purpose of implementing model predictive control of an integrated continuous dry granulation tableting process. It is found that the predictability of ribbon solid fraction and throughput are improved when modification is made to Johanson’s model by incorporating relationships between roll compaction parameters and ribbon elastic recovery. Such relationships typically are either not considered or assumed to be a constant in the models reported in the literature. To describe the nature of the bimodal size distribution of roller compactor granules instead of only using traditional D10, D50 and D90 values, the GSD is represented by a bimodal Weibull distribution with five fitting parameters. Furthermore, these five GSD parameters are predicted by ML models. The results indicate the ribbon solid fraction and screen size are the two most significant factors affecting GSD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
高sir发布了新的文献求助20
3秒前
3秒前
脑洞疼应助早早发论文采纳,获得10
4秒前
17860690918发布了新的文献求助10
4秒前
4秒前
wanci应助孤独的晓丝采纳,获得10
4秒前
笑点低不言完成签到,获得积分10
5秒前
流星发布了新的文献求助10
6秒前
书羽发布了新的文献求助10
7秒前
不安栾发布了新的文献求助10
8秒前
9秒前
hanzhiyuxing发布了新的文献求助10
9秒前
一只特立独行的猫完成签到,获得积分10
10秒前
12秒前
斯文败类应助soso1010采纳,获得10
13秒前
13秒前
想想发布了新的文献求助10
14秒前
Summer完成签到 ,获得积分10
15秒前
吴青应助crazy采纳,获得10
15秒前
16秒前
17秒前
FashionBoy应助孙小雨采纳,获得10
17秒前
46464号发布了新的文献求助10
17秒前
18秒前
听见发布了新的文献求助30
22秒前
23秒前
23秒前
叽里咕卢完成签到,获得积分10
24秒前
24秒前
郭惠智完成签到,获得积分10
24秒前
24秒前
26秒前
green发布了新的文献求助10
26秒前
26秒前
Fiang完成签到,获得积分20
26秒前
陈陈陈完成签到,获得积分10
28秒前
soso1010发布了新的文献求助10
29秒前
panx发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302