A novel method of wind turbine bearing fault diagnosis based on gradient projection sparse reconstruction and fractional Fourier transform and improved convolutional long short-term memory

计算机科学 压缩传感 信号(编程语言) 算法 涡轮机 断层(地质) 方位(导航) 人工智能 模式识别(心理学) 控制理论(社会学) 工程类 控制(管理) 机械工程 地震学 程序设计语言 地质学
作者
Heng Gu,Yan Zhang,Xiang Tian
标识
DOI:10.1177/09544089231180538
摘要

The bearing is one of the most critical components of a wind turbine, and its condition determines whether the wind turbine can work normally or not. And in recent years, the increasing number of wind turbines leads to more and more data collected for bearing condition monitoring, which brings a great challenge to data transmission and preservation. In addition, the vibration signal is one-dimensional, and directly using one-dimensional signals can avoid the complex calculations caused by increasing the dimensionality of the data. In this article, a new fault diagnosis method for wind turbine bearings is proposed using one-dimensional data as input. The method is based on sparsely reconstructed gradient projection and fractional Fourier transform (GPSR-FRFT) for feature extraction of the signal, and a modified convolutional long short-term memory (CNN-LSTM) is used for fault classification of the data. Firstly, the signal is sparsely expressed by the GPSR algorithm, and the original signal is compressed and observed using compressed sensing so that the observed signal can be transmitted instead of the original signal, this process can reduce data samples to save storage space. The original signal is recovered by the inverse solution of compressed sensing at the terminal, and this step can reduce noise interference. Secondly, the time-frequency characteristics of the signal are obtained using the FRFT transform. In addition, in order to solve the problem of insufficient learning ability and low accuracy of convolutional long short-term memory (CNN-LSTM), an improvement was made by adding a jump connection layer to the convolutional layer to improve the training speed and learning ability. The resulting signal is input to an improved CNN-LSTM network, and experimental analysis proves the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
刘佳婷完成签到,获得积分20
2秒前
YiXianCoA完成签到 ,获得积分10
3秒前
3秒前
WHHEY发布了新的文献求助10
4秒前
STH完成签到 ,获得积分10
5秒前
吃了吗没吃完成签到,获得积分10
5秒前
7秒前
公交卡发布了新的文献求助10
8秒前
8秒前
wei完成签到,获得积分10
8秒前
9秒前
852应助huangyao采纳,获得10
10秒前
能干的丸子完成签到,获得积分10
11秒前
科研通AI2S应助550采纳,获得10
13秒前
13秒前
tachikoma完成签到 ,获得积分10
14秒前
公交卡完成签到,获得积分10
15秒前
西瓜橙子完成签到,获得积分10
16秒前
金色闪光应助leaves采纳,获得10
17秒前
Vicki完成签到,获得积分10
18秒前
18秒前
Mian发布了新的文献求助10
19秒前
19秒前
xj0806完成签到,获得积分10
19秒前
元炫完成签到,获得积分10
20秒前
禹代秋完成签到,获得积分10
21秒前
siying完成签到 ,获得积分10
22秒前
huangyao发布了新的文献求助10
23秒前
meng完成签到,获得积分10
24秒前
aaoo完成签到,获得积分10
25秒前
打打应助mokano采纳,获得10
26秒前
斯文巧曼完成签到,获得积分10
26秒前
jimskylxk发布了新的文献求助10
27秒前
29秒前
温暖烨霖完成签到,获得积分10
29秒前
哈哈完成签到 ,获得积分10
31秒前
31秒前
好肥的阿借应助三一采纳,获得10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236178
求助须知:如何正确求助?哪些是违规求助? 2881896
关于积分的说明 8224233
捐赠科研通 2549884
什么是DOI,文献DOI怎么找? 1378686
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623891