点云
计算机科学
GSM演进的增强数据速率
转化(遗传学)
人工智能
点(几何)
过程(计算)
滤波器(信号处理)
集合(抽象数据类型)
构造(python库)
任务(项目管理)
计算机视觉
算法
数学
几何学
生物化学
化学
管理
经济
基因
程序设计语言
操作系统
作者
Cao Li,Yike Xu,Jianwei Guo,Xiaoping Li
标识
DOI:10.1016/j.cag.2023.07.015
摘要
Generating wireframe from point clouds is a challenging task. To make this process easier, we introduce WireframeNet, a deep neural network that transforms point clouds into wireframes. The network inputs a set of disordered points and outputs a complete wireframe structure. We use the insight of the medial axis transform to filter the original point cloud, then predict a set of edge points by learning the geometric transformation, and finally analyze the connectivity between the edge points to construct the complete wireframe structure. We train and evaluate publicly available wireframe datasets and compare the results quantitatively and qualitatively with traditional and other deep learning-based methods. Extensive experiments have demonstrated the robust and efficient performance of our proposed WireframeNet for the task of wireframe structure extraction from point clouds.
科研通智能强力驱动
Strongly Powered by AbleSci AI