亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting outcomes following open revascularization for aortoiliac occlusive disease using machine learning

医学 主髂动脉闭塞性疾病 接收机工作特性 血运重建 围手术期 狼牙棒 布里氏评分 置信区间 外科 心肌梗塞 内科学 机器学习 计算机科学 传统PCI
作者
Ben Li,Raj Verma,Derek Beaton,Hani Tamim,Mohamad A. Hussain,Jamal J. Hoballah,Douglas S. Lee,Duminda N. Wijeysundera,Charles de Mestral,Muhammad Mamdani,Mohammed Al‐Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (6): 1449-1460.e7 被引量:2
标识
DOI:10.1016/j.jvs.2023.07.006
摘要

Objective Open surgical treatment options for aortoiliac occlusive disease carry significant perioperative risks; however, outcome prediction tools remain limited. Using machine learning (ML), we developed automated algorithms that predict 30-day outcomes following open aortoiliac revascularization. Methods The National Surgical Quality Improvement Program (NSQIP) targeted vascular database was used to identify patients who underwent open aortoiliac revascularization for atherosclerotic disease between 2011 and 2021. Input features included 38 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse limb event (MALE; composite of untreated loss of patency, major reintervention, or major amputation) or death. The 30-day secondary outcomes were individual components of the primary outcome, major adverse cardiovascular event (MACE; composite of myocardial infarction, stroke, or death), individual components of MACE, wound complication, bleeding, other morbidity, non-home discharge, and unplanned readmission. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was evaluated with calibration plot and Brier score. Variable importance scores were calculated to determine the top 10 predictive features. Performance was assessed on subgroups based on age, sex, race, ethnicity, symptom status, procedure type, and urgency. Results Overall, 9649 patients were included. The primary outcome of 30-day MALE or death occurred in 1021 patients (10.6%). Our best performing prediction model for 30-day MALE or death was XGBoost, achieving an AUROC of 0.95 (95% confidence interval [CI], 0.94-0.96). In comparison, logistic regression had an AUROC of 0.79 (95% CI, 0.77-0.81). For 30-day secondary outcomes, XGBoost achieved AUROCs between 0.87 and 0.97 (untreated loss of patency [0.95], major reintervention [0.88], major amputation [0.96], death [0.97], MACE [0.95], myocardial infarction [0.88], stroke [0.93], wound complication [0.94], bleeding [0.87], other morbidity [0.96], non-home discharge [0.90], and unplanned readmission [0.91]). The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.05. The strongest predictive feature in our algorithm was chronic limb-threatening ischemia. Model performance remained robust on all subgroup analyses of specific demographic/clinical populations. Conclusions Our ML models accurately predict 30-day outcomes following open aortoiliac revascularization using preoperative data, performing better than logistic regression. They have potential for important utility in guiding risk-mitigation strategies for patients being considered for open aortoiliac revascularization to improve outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
宁宁完成签到 ,获得积分10
11秒前
陈无敌完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
35秒前
back you up完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
1分钟前
汉堡包应助nmslwsnd250采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
小透明应助科研通管家采纳,获得20
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
天天快乐应助hihi采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hihi发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
牛八先生完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助芝士土豆泥采纳,获得10
4分钟前
4分钟前
nmslwsnd250发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661009
求助须知:如何正确求助?哪些是违规求助? 3222203
关于积分的说明 9744032
捐赠科研通 2931818
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503