粒子群优化
混乱的
人工神经网络
变压器
计算机科学
断层(地质)
均方误差
算法
人工智能
工程类
数学
统计
电气工程
地质学
地震学
电压
作者
Aidong Ge,Jiakang Lei,Mingcan Sun
出处
期刊:Journal of physics
[IOP Publishing]
日期:2023-10-01
卷期号:2625 (1): 012074-012074
被引量:1
标识
DOI:10.1088/1742-6596/2625/1/012074
摘要
Abstract This article uses logistic chaotic mapping to improve the particle swarm algorithm parameters and construct the chaotic particle swarm optimization (CPSO) algorithm. Then, the CPSO algorithm is used to optimize the width, weight, and center values of the Radial Basis Function Neural Networks (RBFNN) to improve the RBFNN model used to diagnose transformer fault types. Results show that the CPSO-RBFNN model has a small mean square error and high accuracy in diagnosing transformer faults.
科研通智能强力驱动
Strongly Powered by AbleSci AI