How THF Tunes the Kinetics of H2–THF Hydrates? A Kinetic Study with Morphology and Calorimetric Analysis

水合物 四氢呋喃 笼状水合物 化学 氢气储存 动力学 水溶液 泥浆 化学工程 物理化学 热力学 有机化学 溶剂 物理 量子力学 工程类
作者
Jibao Zhang,Yan Li,Zhenyuan Yin,Xiang Zheng,Praveen Linga
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (51): 21918-21932 被引量:9
标识
DOI:10.1021/acs.iecr.3c02869
摘要

Hydrogen (H2) is a clean energy that holds great promise as a sustainable alternative to fossil fuels. H2 storage has gained increasing research interest in recent decades. Hydrate-based H2 storage technology in the presence of thermodynamic promoters is promising for large-scale H2 storage due to the mild storage conditions required, the nonexplosive nature, and the easy recovery of the stored H2. However, sluggish H2 hydrate formation kinetics and low H2 storage capacity pose major challenges for large-scale applications. In this study, we aim to elucidate the tuning effect of tetrahydrofuran (THF) no more than its stoichiometric concentration (5.56 mol %) on H2–THF hydrate kinetics based on systematically designed kinetic experiments with morphology observation at macroscale complemented with microscale characterization of the synthesized H2–THF hydrates. 3.5 mol% THF yielded a superior H2 gas uptake of 2.36 v/v compared to 5.56 mol % THF. The H2–THF hydrate morphology transited from slurry-like in the aqueous phase to plate-like at the gas–liquid interface with increasing THF concentration (CTHF). Single H2 molecules were identified to be enclathrated in the 512 small cages of the H2–THF sII hydrate for all CTHF based on spectroscopic analysis. THF and binary H2–THF hydrates were identified, and the ratio of the THF hydrate to the H2–THF hydrate increased with increasing CTHF based on calorimetric analysis. Higher H2 gas uptake achieved with CTHF less than 5.56 mol % was closely linked to the morphology of the H2–THF hydrate, which in turn was controlled by CTHF. The coexistence and the ratio of THF and H2–THF hydrates under various CTHF first reported in our study suggested that optimizing CTHF was key in achieving high H2 gas uptake. These findings provide insights for understanding the tuning effect of H2–THF hydrates at multiscales and guide the optimization of thermodynamic promoter concentrations in future large-scale hydrate-based H2 storage applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FUNG完成签到 ,获得积分10
1秒前
分子遗传小菜鸟完成签到,获得积分10
2秒前
柳树完成签到,获得积分10
3秒前
4秒前
眼睛大的薯片完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
忧心的若云完成签到,获得积分10
6秒前
俭朴觅松发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
LY0430完成签到 ,获得积分10
11秒前
anika完成签到,获得积分10
13秒前
genova发布了新的文献求助10
15秒前
小城故事完成签到,获得积分10
16秒前
不想长大完成签到 ,获得积分0
16秒前
jscr完成签到,获得积分10
16秒前
标致小翠发布了新的文献求助10
16秒前
勤恳镜子完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
万能图书馆应助实验狗采纳,获得10
19秒前
科研疯狂者完成签到,获得积分10
21秒前
22秒前
Zo完成签到,获得积分10
22秒前
23秒前
翟闻雨完成签到,获得积分10
24秒前
YTY完成签到,获得积分10
25秒前
研友_8WMgOn完成签到 ,获得积分10
25秒前
tianchen完成签到 ,获得积分10
26秒前
hhr完成签到 ,获得积分10
27秒前
28秒前
清风完成签到,获得积分10
28秒前
锐志无锋完成签到,获得积分10
28秒前
标致小翠完成签到,获得积分10
30秒前
奋进中的科研小菜鸟完成签到,获得积分10
31秒前
逍遥子完成签到,获得积分10
31秒前
32秒前
含糊的代丝完成签到 ,获得积分10
32秒前
Sunny完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
11完成签到,获得积分10
34秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006