How THF Tunes the Kinetics of H2–THF Hydrates? A Kinetic Study with Morphology and Calorimetric Analysis

水合物 四氢呋喃 笼状水合物 化学 氢气储存 动力学 水溶液 泥浆 化学工程 物理化学 热力学 有机化学 溶剂 物理 量子力学 工程类
作者
Jibao Zhang,Yan Li,Zhenyuan Yin,Xiang Zheng,Praveen Linga
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (51): 21918-21932 被引量:9
标识
DOI:10.1021/acs.iecr.3c02869
摘要

Hydrogen (H2) is a clean energy that holds great promise as a sustainable alternative to fossil fuels. H2 storage has gained increasing research interest in recent decades. Hydrate-based H2 storage technology in the presence of thermodynamic promoters is promising for large-scale H2 storage due to the mild storage conditions required, the nonexplosive nature, and the easy recovery of the stored H2. However, sluggish H2 hydrate formation kinetics and low H2 storage capacity pose major challenges for large-scale applications. In this study, we aim to elucidate the tuning effect of tetrahydrofuran (THF) no more than its stoichiometric concentration (5.56 mol %) on H2–THF hydrate kinetics based on systematically designed kinetic experiments with morphology observation at macroscale complemented with microscale characterization of the synthesized H2–THF hydrates. 3.5 mol% THF yielded a superior H2 gas uptake of 2.36 v/v compared to 5.56 mol % THF. The H2–THF hydrate morphology transited from slurry-like in the aqueous phase to plate-like at the gas–liquid interface with increasing THF concentration (CTHF). Single H2 molecules were identified to be enclathrated in the 512 small cages of the H2–THF sII hydrate for all CTHF based on spectroscopic analysis. THF and binary H2–THF hydrates were identified, and the ratio of the THF hydrate to the H2–THF hydrate increased with increasing CTHF based on calorimetric analysis. Higher H2 gas uptake achieved with CTHF less than 5.56 mol % was closely linked to the morphology of the H2–THF hydrate, which in turn was controlled by CTHF. The coexistence and the ratio of THF and H2–THF hydrates under various CTHF first reported in our study suggested that optimizing CTHF was key in achieving high H2 gas uptake. These findings provide insights for understanding the tuning effect of H2–THF hydrates at multiscales and guide the optimization of thermodynamic promoter concentrations in future large-scale hydrate-based H2 storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bao应助科研通管家采纳,获得20
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
汉青完成签到,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
Loooong应助科研通管家采纳,获得20
1秒前
科目三应助科研通管家采纳,获得10
1秒前
略略略爱完成签到 ,获得积分10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
QQ发布了新的文献求助10
2秒前
xyy001完成签到,获得积分10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
nnnnnnxh发布了新的文献求助10
2秒前
2秒前
顺利晓蓝完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
LINGYUAN1991应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
lyaz应助科研通管家采纳,获得10
3秒前
3秒前
LINGYUAN1991应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得80
4秒前
浮游应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
认真的柏柳完成签到 ,获得积分10
4秒前
LINGYUAN1991应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406