Evaluation of deep learning training strategies for the classification of bone marrow cell images

卷积神经网络 人工智能 计算机科学 骨髓 模式识别(心理学) 深度学习 召回 领域(数学分析) 医学 病理 机器学习 数学 数学分析 语言学 哲学
作者
Stefan Glüge,Stefan Balabanov,Viktor H. Koelzer,Thomas Ott
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107924-107924
标识
DOI:10.1016/j.cmpb.2023.107924
摘要

Background and Objective: The classification of bone marrow (BM) cells by light microscopy is an important cornerstone of hematological diagnosis, performed thousands of times a day by highly trained specialists in laboratories worldwide. As the manual evaluation of blood or BM smears is very time-consuming and prone to inter-observer variation, new reliable automated systems are needed. Methods: We aim to improve the automatic classification performance of hematological cell types. Therefore, we evaluate four state-of-the-art Convolutional Neural Network (CNN) architectures on a dataset of 171,374 microscopic cytological single-cell images obtained from BM smears from 945 patients diagnosed with a variety of hematological diseases. We further evaluate the effect of an in-domain vs. out-of-domain pre-training, and assess whether class activation maps provide human-interpretable explanations for the models' predictions. Results: The best performing pre-trained model (Regnet_y_32gf) yields a mean precision, recall, and F1 scores of 0.787±0.060, 0.755±0.061, and 0.762±0.050, respectively. This is a 53.5% improvement in precision and 7.3% improvement in recall over previous results with CNNs (ResNeXt-50) that were trained from scratch. The out-of-domain pre-training apparently yields general feature extractors/filters that apply very well to the BM cell classification use case. The class activation maps on cell types with characteristic morphological features were found to be consistent with the explanations of a human domain expert. For example, the Auer rods in the cytoplasm were the predictive cellular feature for correctly classified images of faggot cells. Conclusions: Our study provides data that can help hematology laboratories to choose the optimal training strategy for blood cell classification deep learning models to improve computer-assisted blood and bone marrow cell identification. It also highlights the need for more specific training data, i.e. images of difficult-to-classify classes, including cells labeled with disease information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
咖啡豆应助科研通管家采纳,获得10
2秒前
咖啡豆应助科研通管家采纳,获得10
2秒前
爆米花应助Persistence采纳,获得10
2秒前
咖啡豆应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
又胖了完成签到,获得积分10
3秒前
脑洞疼应助谦让诗采纳,获得10
4秒前
机灵自中完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
爱听歌的寄云完成签到 ,获得积分10
8秒前
8秒前
Demo发布了新的文献求助10
9秒前
研友_VZG7GZ应助维生素采纳,获得10
10秒前
宋泽艺完成签到 ,获得积分10
10秒前
13秒前
王粒完成签到,获得积分10
19秒前
21秒前
陈宇是傻卵完成签到,获得积分10
21秒前
Demo完成签到,获得积分10
24秒前
打鬼忍者完成签到 ,获得积分10
25秒前
june完成签到,获得积分10
26秒前
27秒前
27秒前
浅梳雨完成签到,获得积分10
28秒前
stellafreeman完成签到,获得积分10
28秒前
楼亦玉完成签到,获得积分10
29秒前
萝卜炖土豆完成签到,获得积分10
30秒前
30秒前
朴实香露发布了新的文献求助10
33秒前
执玉笛完成签到,获得积分10
34秒前
好学者完成签到 ,获得积分0
36秒前
cc4ever完成签到,获得积分10
36秒前
37秒前
38秒前
未来的闫院士完成签到 ,获得积分10
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194