清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fedcs: Efficient communication scheduling in decentralized federated learning

计算机科学 架空(工程) 可扩展性 分布式计算 稳健性(进化) 同步(交流) 调度(生产过程) 计算机网络 数学优化 数学 生物化学 数据库 基因 操作系统 频道(广播) 化学
作者
RH Zong,Yunchuan Qin,Fan Wu,Zhuo Tang,Kenli Li
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102028-102028 被引量:1
标识
DOI:10.1016/j.inffus.2023.102028
摘要

Decentralized federated learning is a training approach that prioritizes user data privacy protection, while also offering improved scalability and robustness. However, as the number of edge devices participating in training increases, a significant communication overhead arises among devices located in different geographical locations. Therefore, designing a well-thought-out gradient synchronization strategy is crucial for minimizing the overall communication overhead of training. To tackle this issue, this article introduces a 2D-Ring network structure based parameter synchronization strategy and an 2D-attention-based device placement algorithm, aiming to minimize communication overhead. The parameter synchronization strategy devises a two-layer circular communication architecture for the devices involved in training, thereby reducing the overall frequency of parameter synchronization in decentralized federated learning. By taking into account the total communication overhead and the device placement strategy, an optimization problem is formulated. Specifically, a 2D-attention neural network is constructed to optimize the device placement solution based on 2D-Ring network structure, leading to reduced communication overhead. Moreover, an evaluation model is designed to assess the communication overhead in a complex decentralized system during federated training. This enables precise determination of the total communication overhead throughout the training process, providing valuable insights for devising the device placement strategy. Extensive simulations confirm that the proposed approach achieves a substantial reductions of 55% and 64% in the total communication overhead for decentralized federated learning training with 50 and 100 devices, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyanph完成签到 ,获得积分10
21秒前
39秒前
宇文非笑完成签到 ,获得积分10
46秒前
Milton_z完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
wukuner2发布了新的文献求助10
2分钟前
方白秋完成签到,获得积分10
2分钟前
江三村完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
dolphin完成签到 ,获得积分0
3分钟前
机械魔尺完成签到 ,获得积分10
4分钟前
4分钟前
腰果虾仁完成签到 ,获得积分10
4分钟前
4分钟前
耙耙柑发布了新的文献求助10
4分钟前
耙耙柑完成签到 ,获得积分10
5分钟前
从容芮应助科研通管家采纳,获得10
5分钟前
从容芮应助科研通管家采纳,获得30
5分钟前
check003完成签到,获得积分10
5分钟前
5分钟前
Ricardo完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
从容芮应助科研通管家采纳,获得30
7分钟前
33应助科研通管家采纳,获得10
7分钟前
dream完成签到 ,获得积分10
8分钟前
keyan完成签到 ,获得积分10
8分钟前
8分钟前
Vegeta完成签到 ,获得积分10
9分钟前
深情安青应助禾斗石开采纳,获得50
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
volvoamg发布了新的文献求助10
10分钟前
隐形曼青应助volvoamg采纳,获得10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311205
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516766
捐赠科研通 2619301
什么是DOI,文献DOI怎么找? 1432204
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649815