Fedcs: Efficient communication scheduling in decentralized federated learning

计算机科学 架空(工程) 可扩展性 分布式计算 稳健性(进化) 同步(交流) 调度(生产过程) 计算机网络 数学优化 生物化学 化学 频道(广播) 数学 数据库 基因 操作系统
作者
Ruixing Zong,Yunchuan Qin,Fan Wu,Zhuo Tang,Kenli Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102028-102028 被引量:16
标识
DOI:10.1016/j.inffus.2023.102028
摘要

Decentralized federated learning is a training approach that prioritizes user data privacy protection, while also offering improved scalability and robustness. However, as the number of edge devices participating in training increases, a significant communication overhead arises among devices located in different geographical locations. Therefore, designing a well-thought-out gradient synchronization strategy is crucial for minimizing the overall communication overhead of training. To tackle this issue, this article introduces a 2D-Ring network structure based parameter synchronization strategy and an 2D-attention-based device placement algorithm, aiming to minimize communication overhead. The parameter synchronization strategy devises a two-layer circular communication architecture for the devices involved in training, thereby reducing the overall frequency of parameter synchronization in decentralized federated learning. By taking into account the total communication overhead and the device placement strategy, an optimization problem is formulated. Specifically, a 2D-attention neural network is constructed to optimize the device placement solution based on 2D-Ring network structure, leading to reduced communication overhead. Moreover, an evaluation model is designed to assess the communication overhead in a complex decentralized system during federated training. This enables precise determination of the total communication overhead throughout the training process, providing valuable insights for devising the device placement strategy. Extensive simulations confirm that the proposed approach achieves a substantial reductions of 55% and 64% in the total communication overhead for decentralized federated learning training with 50 and 100 devices, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强铸海完成签到,获得积分10
1秒前
牛牛眉目发布了新的文献求助10
1秒前
1秒前
2秒前
干姜发布了新的文献求助10
3秒前
Pp发布了新的文献求助10
4秒前
666应助科研鸟采纳,获得10
4秒前
蓝天白云发布了新的文献求助10
4秒前
瓦解99发布了新的文献求助10
7秒前
yx_cheng应助zzz采纳,获得30
7秒前
Coraline应助jt采纳,获得10
8秒前
9秒前
14秒前
csy发布了新的文献求助10
16秒前
瓦解99完成签到,获得积分10
17秒前
17秒前
18秒前
张渔歌完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
asdf应助明天见采纳,获得10
21秒前
愉快天亦完成签到,获得积分10
22秒前
24秒前
24秒前
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
ED应助科研通管家采纳,获得10
25秒前
彭于彦祖应助科研通管家采纳,获得30
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
好运来应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388