清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries

人工神经网络 可解释性 均方误差 计算机科学 机器学习 人工智能 数据挖掘 统计 数学
作者
Tobias Hofmann,Jacob Hamar,Marcel Rogge,Christoph Zoerr,Simon V. Erhard,Jan Philipp Schmidt
出处
期刊:Journal of The Electrochemical Society [Institute of Physics]
卷期号:170 (9): 090524-090524 被引量:18
标识
DOI:10.1149/1945-7111/acf0ef
摘要

One of the most challenging tasks of modern battery management systems is the accurate state of health estimation. While physico-chemical models are accurate, they have high computational cost. Neural networks lack physical interpretability but are efficient. Physics-informed neural networks tackle the aforementioned shortcomings by combining the efficiency of neural networks with the accuracy of physico-chemical models. A physics-informed neural network is developed and evaluated against three different datasets: A pseudo-two-dimensional Newman model generates data at various state of health points. This dataset is fused with experimental data from laboratory measurements and vehicle field data to train a neural network in which it exploits correlation from internal modeled states to the measurable state of health. The resulting physics-informed neural network performs best with the synthetic dataset and achieves a root mean squared error below 2% at estimating the state of health. The root mean squared error stays within 3% for laboratory test data, with the lowest error observed for constant current discharge samples. The physics-informed neural network outperforms several other purely data-driven methods and proves its advantage. The inclusion of physico-chemical information from simulation increases accuracy and further enables broader application ranges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
茶烟梧月完成签到,获得积分10
13秒前
茶烟梧月发布了新的文献求助10
17秒前
37秒前
zhangsan完成签到,获得积分10
42秒前
47秒前
48秒前
54秒前
57秒前
Dz1990m发布了新的文献求助10
59秒前
高高代珊完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
龚文亮发布了新的文献求助10
1分钟前
2分钟前
知行者完成签到 ,获得积分10
2分钟前
曾经不言完成签到 ,获得积分10
2分钟前
Fern完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Hello应助111111111采纳,获得10
3分钟前
Jasper应助华东小可爱采纳,获得30
3分钟前
3分钟前
龚文亮完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
清脆的飞丹完成签到,获得积分10
4分钟前
华仔应助华东小可爱采纳,获得10
4分钟前
黑球发布了新的文献求助10
5分钟前
Bin_Liu完成签到,获得积分20
5分钟前
5分钟前
5分钟前
黑球完成签到,获得积分10
5分钟前
fff完成签到,获得积分20
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264