Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries

人工神经网络 可解释性 均方误差 计算机科学 机器学习 人工智能 数据挖掘 统计 数学
作者
Tobias Hofmann,Jacob Hamar,Marcel Rogge,Christoph Zoerr,Simon V. Erhard,Jan Philipp Schmidt
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:170 (9): 090524-090524 被引量:47
标识
DOI:10.1149/1945-7111/acf0ef
摘要

One of the most challenging tasks of modern battery management systems is the accurate state of health estimation. While physico-chemical models are accurate, they have high computational cost. Neural networks lack physical interpretability but are efficient. Physics-informed neural networks tackle the aforementioned shortcomings by combining the efficiency of neural networks with the accuracy of physico-chemical models. A physics-informed neural network is developed and evaluated against three different datasets: A pseudo-two-dimensional Newman model generates data at various state of health points. This dataset is fused with experimental data from laboratory measurements and vehicle field data to train a neural network in which it exploits correlation from internal modeled states to the measurable state of health. The resulting physics-informed neural network performs best with the synthetic dataset and achieves a root mean squared error below 2% at estimating the state of health. The root mean squared error stays within 3% for laboratory test data, with the lowest error observed for constant current discharge samples. The physics-informed neural network outperforms several other purely data-driven methods and proves its advantage. The inclusion of physico-chemical information from simulation increases accuracy and further enables broader application ranges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshine完成签到,获得积分10
刚刚
1秒前
浮游应助潇洒平松采纳,获得10
2秒前
wlscj应助诺u采纳,获得20
3秒前
健壮雨兰完成签到,获得积分10
3秒前
5秒前
长情平彤发布了新的文献求助30
5秒前
Shi完成签到,获得积分10
5秒前
HtheJ完成签到,获得积分10
6秒前
里多完成签到,获得积分20
7秒前
7秒前
环游世界完成签到 ,获得积分10
8秒前
充电宝应助酷炫小天鹅采纳,获得30
8秒前
9秒前
浮游应助dgqz采纳,获得10
10秒前
明研完成签到,获得积分10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
风吹麦田应助科研通管家采纳,获得50
12秒前
斯文败类应助科研通管家采纳,获得30
12秒前
科目三应助科研通管家采纳,获得10
12秒前
张大诚完成签到,获得积分10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
彭于彦祖应助科研通管家采纳,获得150
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
左右应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
哆啦十七应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350697
求助须知:如何正确求助?哪些是违规求助? 4484017
关于积分的说明 13957727
捐赠科研通 4383424
什么是DOI,文献DOI怎么找? 2408351
邀请新用户注册赠送积分活动 1400964
关于科研通互助平台的介绍 1374387